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Statistical Techniques Employed 

in Atmospheric Sampling 

A.1 Introduction 

Proper use of statistics and statistical techniques is necessary for assessing the 
quality of ambient air sampling data. For a comprehensive discussion of the 
subject of data quality assessment (DQA), review EPA’s technical assistance 
document, Guidance for Data Quality Assessment, Practical Methods of Data 
Analysis, EPA QA/G-9 (EPA/600/R-96/084), January 1998. This reference 
document provides practical demonstrations on how to use the data quality 
assessment (DQA) technique in evaluating environmental data sets and shows 
how to apply some graphic and statistical tools for performing DQA. 

This chapter is intended as an introduction to statistics and statistical concepts 
and their use in analyzing ambient air sampling data. Topics addressed include: 
(a) Data Quality Objectives (DQO), (b) Data Plotting, (c) Measures of Central 
Tendency, (d) Measures of Dispersion, and (e) Distribution Curves. Although 
these topics are not simple, they can be understood and used by non-statisticians. 
If a detailed statistical analysis of data is required, it is recommended that an 
experienced statistician be consulted.  

Students who could benefit from a review of basic mathematics in ambient 
monitoring are encouraged to access the EPA Air Pollution Training Institute 
course, SI 100: Mathematics Review for Air Pollution Control. This self-
instruction course can be found at: 

 
http://yosemite.epa.gov/oaqps/EOGtrain.nsf/DisplayView/SI_100_0-5?OpenDocument 

 
In addition, the University of Illinois-Chicago, School of Public Health-

Environmental and Occupational Health Division, has developed an Internet-
based program entitled “Introduction to Environmental Statistics.” This program 
is presented as a video series in three modules on topics which include 
interpreting monitoring data, sampling and analytical limitations and sample 
detection limits, and quality assurance and quality control. This program can be 
found at:  http://www.uic.edu/sph/eohs_webcasts.htm.  

Appendix 

A 
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It is important to note that the statistical calculations discussed in this Appendix 
are best and more easily performed by employing one of many commercially 
available computer-based statistical software packages. 

A.2 The Data Quality Objectives (DQO) Process 

While the Data Quality Objectives (DQO) Process is not a statistical technique 
per se, it is important because it helps to establish criteria for data quality and the 
development of data collection designs. DQOs provide the appropriate context 
for understanding the purpose of the ambient air sampling and analysis data 
collection effort. Also, they establish the qualitative and quantitative criteria for 
assessing the quality of the collected data set, based on the predefined intended 
use of data. Specific information on the Data Quality Objectives Process can be 
found in EPA document, “Guidance on Systematic Planning Using the Data 
Quality Objective Process” (EPA QA/G-4), at: http://www.epa.gov/quality/qs-
docs/g4-final.pdf. 

DQOs are qualitative and quantitative statements derived from the outputs 
of the first six steps of the DQO Process that encompass the following:  

 Clarify the study objective. 

 Define the most appropriate type of data to collect. 

 Determine the most appropriate conditions from which to collect the 
data. 

 Specify tolerable limits on decision errors which will be used as the basis 
for establishing the quantity and quality of data needed to support the 
decision. 

The DQOs are then used to develop a scientific and resource-effective data 
collection design. 
 

The Seven Steps of the DQO Process 

Step 1: State the Problem. Concisely describe the problem to be studied. 
Review prior studies and existing information to gain a sufficient 
understanding to define the problem. 

Step 2: Identify the Goal of the Study. Identify what questions the study will 
attempt to answer. 

Step 3: Identify Information Inputs. Identify the information that needs to be 
obtained and the measurements that need to be taken to resolve the 
decision statement. 

Step 4: Define Boundaries of the Study. Specify the time periods and spatial area 
to which decisions will apply. Determine when and where data 
should be collected. 

Step 5: Develop the Analytical Approach. Define the statistical parameters of 
interest, specify the action level, and integrate the previous DQO 
outputs into a single statement that describes the logical basis for 
choosing among alternative actions. 
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Step 6: Specify the Performance or Acceptance Criteria. Define the decision maker’s 
tolerable decision error rates based on a consideration of the 
consequences of making an incorrect decision. 

Step 7: Develop the Plan for Obtaining Data. Evaluate information from the 
previous steps and generate alternative data collection designs. 
Choose the most resource-effective design that meets all DQOs. 

 

Outputs of the DQO Process 

The DQO Process leads to the development of a quantitative and qualitative 
framework for a study. Each step of the Process derives valuable criteria that will be 
used to establish the final data collection design. The first five steps of the DQO 
Process identify mostly qualitative criteria, such as what problem has initiated the 
study and what decision it attempts to resolve. These steps also define the type of 
data that will be collected, where and when the data will be collected, and a decision 
rule that specifies how the decision will be made. 

The sixth step defines quantitative criteria expressed as limits on decision errors 
that the decision maker can tolerate. 

The final step is used to develop a data collection design based on the criteria 
developed in the first six steps. The final product of the DQO Process is a data 
collection design that meets the quantitative and qualitative needs of the study. 

A.3 Data Collection Design 

A data collection design specifies the final configuration of the environmental 
monitoring or measurement effort required to satisfy the DQOs. It designates: 

 the types and quantities of samples or monitoring information to be 
collected; 

 where, when, and under what conditions they should be collected; 

 what variables are to be measured; and 

 QA/QC procedures to ensure that sampling design and measurement 
errors are controlled sufficiently to meet the tolerable decision error rates 
specified in the DQOs. 

 

Data Plotting 

Data is usually uninterpretable in the form in which it is collected. In this section, 
we shall consider the graphical techniques of summarizing such data so that the 
meaningful information can be extracted from it. There are two kinds of 
variables to which we assign data: continuous variables and discrete variables.  

A continuous variable is one that can assume any value in some interval of 
values. Examples of continuous variables are weight, volume, length, time, and 
temperature. Most air pollution data are taken from continuous variables. 
Discrete variables, on the other hand, are those variables whose possible values 
are integers. Therefore, they involve counting rather than measuring. Examples 
of discrete variables are the number of sample stations, number of people in a 
room, and number of times a control standard is violated. Since any measuring 
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device is of limited accuracy, measurements in real life are actually discrete in 
nature rather than continuous, but this should not keep us from regarding such 
variables as continuous. When a weight is recorded as 165 pounds, it is assumed 
that the actual weight is somewhere between 164.5 and 165.5 pounds. 

A.4 Graphical Analysis 

Frequency Tables 

Let us consider the set of data in Table A-1, which represents SO2 levels for a 
given hour for 25 days. The first step in summarizing the data is to form a 
frequency table. A frequency table is a table prepared by dividing a data set into 
selected units or class intervals, then counting and inserting the number of points 
(frequency of occurrences) within the units or class intervals. Table A-2 is a 
frequency table prepared from the SO2 data set given in Table A-1. 
 In constructing the frequency table, we have divided the 25 points in the data 
set into 11 class intervals with each interval being 15 units in length. The choice 
of dividing the data into 11 intervals was purely arbitrary. However, in dealing 
with data it is best to choose the length of the class interval such that 8 to 15 
intervals will include all of the data under consideration. Deriving the frequency 
of occurrence column involves nothing more than counting the number of 
values in each interval. The relative frequency column is obtained by dividing the 
number of points or frequency of occurrences within a unit by the total number 
of events within the data set, which in this example is 25. 

From observation of the frequency table, we can now see the data taking form. 
The values appear to be clustered between 25 and 85 ppb. In fact, nearly 80% are in 
this interval. 
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Table A-1. SO2 levels. 

Days SO2 Concentration (ppb)* 
1 53 
2 72 
3 59 
4 45 
5 44 
6 85 
7 77 
8 56 
9 157 
10 83 
11 120 
12 81 
13 35 
14 63 
15 48 
16 180 
17 94 
18 110 
19 51 
20 47 
21 55 
22 43 
23 28 
24 38 
25 26 

*ppb = parts per billion collected SO2 levels. 

 
 
 

Table A-2. Frequency table. 

Class Interval (ppb) Frequency of 
Occurrence (total 25) 

Relative Frequency 

25 - 40 4 4/25 = 0.16 

40 - 55 7 7/25 = 0.28 

55-70 4 4/25=0.16 

70-85 4 4/25=0.16 

85 - 100 2 2/25 = 0.08 

100-115 1 1/25=0.04 

115-130 1 1/25=0.04 

130 - 145 0 0.00 

145 - 160 1 1/25 = 0.04 

160 - 175 0 0.00 

175 - 190 1 0.04 
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The Frequency Polygon 

The next step is to graph the information in the frequency table. One way of doing 
this would be to plot the frequency for the midpoint of each class interval. The solid 
line connecting the points of Figure A-1 forms a frequency polygon. 

 

 

Figure A-1. Pollution concentration (midpoint of class interval) frequency polygon. 

The Histogram 

Another method of graphing the information would be by constructing a 
histogram as shown in Figure A-2. The histogram is a two-dimensional graph in 
which the length of the class interval is taken into consideration. The histogram 
can be a very useful tool in statistics, especially if we convert the given frequency 
scale to a relative scale so that the sum of all the ordinates equals one. This is 
shown in Figure A-3. Thus, each ordinate value is derived by dividing the original 
value by the number of observations in the sample, in this case, 25.  

The advantage in constructing a histogram like this one is that we can read 
probabilities from it, if we can assume a scale on the abscissa such that a given 
value will fall in any one interval in the area under the curve in that interval. For 
example, the probability that a value will fall between 55 and 70 is equal to its 
associated interval's portion of the total area of intervals, which is 0.16. 
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Figure A-2. Pollutant concentration histogram of frequency distribution curve. 

 
 
 

 

Figure A-3. Histogram of percent frequency distribution curve. 
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The Cumulative Frequency Distribution 

Using the frequency table and histogram discussed above, we can construct a 
cumulative frequency table and curve as shown in Table A-3 and Figure A-4. 
 

Table A-3. Cumulative frequency table. 

SO2 level Cumulative frequency 
Relative cumulative 

frequency 
Under 40 4 0.16 

” 55 11 0.44 
” 70 15 0.60 
” 85 19 0.76 
” 100 21 0.84 
” 115 22 0.88 
” 130 23 0.92 
” 145 23 0.92 
” 160 24 0.96 
” 175 24 0.96 
” 190 25 1.00 

 
 
 

 

Figure A-4. Cumulative frequency distribution curve. 
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The cumulative frequency table gives the number of observations less than a 
given value. Probabilities can be read from the cumulative frequency curve or 
cumulative frequency table. For example, to find the probability that a value will 
be less than 85, we read up to the curve at the point x = 85 and across to the 
value 0.76 on the y-axis. An alternative way to use the table is to go to the row 
where the SO2 level shows under 85, then go across to the relative cumulative 
frequency value of 0.76. 
 

Distribution of Data 

When we draw a histogram for a set of data, we are representing the distribution 
of the data. Different sets of data will vary in relation to one another and, 
consequently, their histograms will look different. In this chapter, we identify 
three characteristics that will distinguish the distributions of different sets of 
data. These are central location, dispersion, and skewness. These are 
characterized in Figure A-5. Curves A and B have the same central location, but 
B is more dispersed. However, both A and B are symmetrical and are, therefore, 
said not to be skewed. Curve C is skewed to the right and has a different central 
location than A and B. Mathematical measures of central location and dispersion 
will be discussed later. 
 

 

Figure A-5. Relative frequency distribution showing: Curve A and B both centrally 
located, Curve B being more dispersed than Curve A, and the skewness of Curve C. 

Transformation of Data 

In most statistical work, data that closely approximate a particular symmetrical 
curve, called the normal curve, are required. Both curves A and B in Figure A-5 
are examples of normal curves. In dealing with skewed curves, such as C in the 
same figure, it is desirable to transform the data in some way so that a 
symmetrical curve resembling the normal curve is obtained. Referring to the 
frequency table (Table A-2) and histogram (Figure A-2) of the data used earlier, it 
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can be seen that for this set of data, the distribution is skewed (in the opposite 
direction as Curve C above), hence the data are not normally distributed. 
 

The Logarithmic Transformation 

One of the most successful ways of deriving a symmetrical distribution from a 
skewed distribution is by expressing the original data in terms of logarithms. The 
logarithms of the original data are given in Table A-4. 

Arbitrarily dividing the logarithmic data into nine class intervals, each of 0.1 unit 
in length, we can prepare the logarithmic frequency table in Table A-5. As can be 
seen in Figure A-6, a frequency plot of the log transformed data more closely 
approximates a symmetrical curve than the arithmetic plot of the original data. 
 

Table A-4. Logarithmic transformation. 

Day Pollutant conc. X Log10X 

1 53 1.724 

2 72 1.857 

3 59 1.771 

4 45 1.653 

5 44 1.644 

6 85 1.929 

7 77 1.887 

8 56 1.748 

9 157 2.196 

10 83 1.919 

11 120 2.079 

12 81 1.909 

13 35 1.544 

14 63 1.799 

15 48 1.681 

16 180 2.255 

17 94 1.973 

18 110 2.041 

19 51 1.708 

20 47 1.672 

21 55 1.740 

22 43 1.634 

23 28 1.447 

24 38 1.580 

25 26 1.415 
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Table A-5. Logarithmic frequency table. 

Class interval Frequency of 
occurrence 

Cumulative 
frequency 

Relative cumulative 
frequency 

1.4 - 1.5 2 2 0.08 

1.5 - 1.6 2 4 0.16 

1.6 - 1.7 5 9 0.36 

1.7 - 1.8 6 15 0.60 

1.8 - 1.9 2 17 0.68 

1.9 - 2.0 4 21 0.84 

2.0 - 2.1 2 23 0.92 

2.1 - 2.2 1 24 0.96 

2.2 - 2.3 1 25 1.00 

 

Probability Graph Paper 

Probability graph paper is used in the analysis of cumulative frequency curves; 
for example, the graph paper can be used as a rough test of whether the 
arithmetic or the logarithmic scale best approximates a normal distribution. The 
scale, arithmetic or logarithmic, on which the cumulative frequency distribution 
of the data is more nearly a straight line, is the one providing the better 
approximation to a normal distribution. Plotting the cumulative distribution 
curve of the data above on the two scales shows that the logarithmic scale yields 
the better fit (Figure A-6). 
 
 
 

 

Figure A-6. Normalized data plot vs. non-transformed data. 
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These probability plots can be used, if the data are normally distributed, to 
estimate the mean and standard deviation of the data. The estimate of the mean, 
as will be shown later, is the 50th percentile point, and the estimation of the 
standard deviation is the distance from the 50th percentile to the 16th percentile. A 
percentile is a measure of the relative position of one of several observations in 
relation to all of the observations, and provides a measure of relative standing 
that is useful for summarizing data. 
 

Least-Square Linear Regression 

If the linear relationship between two variables is significant, a least-square linear 
regression line, or line of “best fit,” may be drawn to represent the data. This 
relationship can then be used to determine the value of an unknown variable. 
For example, if the ambient air concentration is unknown, but linearly related to 
the response of an ambient air monitor, we can estimate the ambient air 
concentration based on an observed response from the air monitor. 
Algebraically, a straight line has the following form: 
 

(Eq. A-1) bmxy   

 
Where: y = dependent variable plotted on the ordinate (y-axis) 
 x = explanatory variable (independent variable) plotted on the abscissa  
   (x-axis) 
 b = the point at which the line intercepts the y-axis at x = 0 
 m = slope, which shows how much of a change of 1 unit of x affects y 
 
 Linear regression minimizes the vertical distance between all data points and 
the straight line (Figure A-7). 
 

 

Figure A-7. Linear regression curve. 

The constants m and b for the “least-square” line can be determined using the 
following equations: 
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(Eq. A-2)  

  
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2

2

 

 
(Eq. A-3)   xmyb   

 
Where:  n =  number of observations 

  y  = nxx;ny   

 
Example Problem 
Calibration of an ambient air analyzer is required before it can be used to 
provide reliable ambient air concentration measurements. A typical calibration 
consists of the introduction of known and certified standard concentrations, 
typically in parts per million (ppm) over the linear operational range of the 
instrument, and the recording of the corresponding response of the instrument 
in units such as volts. Based on the recorded responses and the known 
concentrations, a least-square linear relationship between the variables can be 
calculated and subsequently used to determine ambient concentrations based on 
the response of the analyzer. The following data were collected during a 
calibration of a chemiluminescent NOX analyzer. 
 

x = Concentration NOx (ppm) 0.05 0.10 0.20 0.30 0.45 

y = Instrument response (volts) 1.20 2.15 3.90 6.20 9.80 

 
 
 Values for m and b for the least-square or “best fit” line can be calculated 

from: x ,  y , 
2

x , yx , n , y , and x . 

 

Solution: 
 

  1.145.030.020.010.005.0x  

  25.2380.920.690.315.220.1y  

          345.045.030.020.010.005.0
222222 x  

               33.780.945.020.630.090.320.015.210.020.105.0 xy

5n  

 

22.0
5

1.1



n

x
x  

65.4
5

25.23



n

y
y  
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  

 
6.21

103.0

22.2

5

1.1
345.0

5

25.231.1
33.7

2






m  

 
 

   102.022.06.2165.4 b  

 
The equation for this calibration curve would be y = 21.6x – 0.102, where y 

(the instrument response in volts) is equal to the ambient concentration in ppm 
times the slope of the line which is 21.6, plus the y-intercept of x, which is 0.102. 

 
To calculate ambient concentrations in ppm, we solve the equation for x : 

 

 
m

by
ppmx


  

 
 

 
21.6

y
ppmx

102.0
  

 

A.5 Measures of Central Tendency 

Arithmetic Average, or Mean 

A basic way of summarizing data is by the computation of a central value. The 
most commonly used central value statistic is the arithmetic average, or the 
mean. This statistic is particularly useful when applied to a set of data having a 
fairly symmetrical distribution. The mean is an efficient statistic in that it 
summarizes all the data in the set, and because each piece of data is taken into 
account in its computation. The formula for computing the mean is: 
 

(Eq. A-4)   
n

X

n

XXXX
X

in 





...321  

 

Where:  X  = arithmetic mean 

   iX  = ith measurement 

   n = total number of observations 
 

The arithmetic mean is not a perfect measure of the true central value of a 
given data set. Arithmetic means overemphasize the importance of one or two 
extreme data points. Many measurements of a normally distributed data set will 
have an arithmetic mean that closely approximates the true central value. 
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Example Problem 
Calculate the mean of 3.0, 2.5, 2.2, 3.4, 3.2. 

 

Solution:  
n

X

n

XXXX
X

in 





...321  

   
5

2.34.32.25.20.3 
X  

   86.2
5

3.14
X  

 

Median 

When a distribution of data is asymmetrical, such as that of Figure A-8, it is 
sometimes desirable to compute a different measure of central value. This 
second measure, known as the median, is simply the middle value of a 
distribution, or the quantity above which half the data lie and below which the 
other half of the data lie.  

If n data are listed in their order of magnitude (from lowest to highest), the 
median is the [(n+1)/2] value. If the number of data is even, then the numerical 
data of the median is the value midway between the two data nearest the middle. 
The median, being a positional value, is less influenced by extreme values in a 
distribution than the mean. 

 
 

 

Figure A-8. Example of an asymmetrical distribution of data (median vs. mean). 
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Example Problem 
Find the median of 22, 10, 15, 8, 13, 18. 
 
Solution: The data must first be arranged in order of magnitude, such as: 
 
 8, 10, 13, 15, 18, 22 
 

Since n = 6, the median is the 7/2 = 3.5 value, thus the median is 14, or the 
value halfway between 13 and 15, since this data set has an even number of 
measurements. 

 
Geometric Mean 

Another measure of central tendency used in more specialized applications is the 
geometric mean (Xz). The geometric mean is defined by using the following 
equation: 
 

(Eq. A-5)       n
nz XXXX ...21  

 

If scientific calculators are not available, a formula that more readily lends 
itself to a four-function calculator is: 

 iz XLog
n

XLog 1010

1
 

The formula is derived as follows. 
 

            n
n

n
nz XXXLogXXXLogXLog

1

212110 ......   

 
Where: log is to base 10 
 

 but LogX
n

LogX n
11

  

 

 and   LogYLogXYXLog   

 

Therefore:      nXnXXLog
n

XLog
1

2 21
1

  

 

  nX LogX LogX Log
n

 ...
1

21  

 

 
i

iX Log
n

1
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The geometric mean is most often used for data whose causes behave 
exponentially rather than linearly, such as in the growth of bacteria, 
measurements that are ratios, or lognormal distributions. 

In a distribution shaped like that of Figure A-8, the geometric mean, like the 
median, will yield a value closer to the main cluster of values than will the mean. 
The arithmetic mean is always higher than the geometric mean. 

 
Example Problem 
Calculate the geometric mean of 3.0, 2.5, 2.2, 3.4, 3.2. 

 
Solution: 

      8.22.34.32.25.20.35 zX  

or 

 505.0531.0342.0398.0477.0
5

1
10 zXLog  

4506.010 zXLog  

8.210 4506.0 zX  

 

A.6 Measures of Dispersion 

Measures of central tendency are more meaningful if accompanied by 
information on measures of dispersion. Measures of dispersion describe how the 
data spread out from the center. Examples of measures of dispersion in a data 
set include the range, sample standard deviation, coefficient of variation, and the 
standard geometric deviation. 

 

The Range 

The easiest measure of dispersion of a set of data is the difference between the 
maximum and the minimum values in the set, termed the range. The range does 
not make full use of the information contained in the data, since only two of the 
data points are taken into account. Thus the range is a useful measure of 
variability for data sets of 10 or less. 
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Figure A-9. Dispersion characteristic curves. 

Standard Deviation 

The most commonly used measure of dispersion, or variability, of sets of data is 
the standard deviation. Its defining formula is given by the expression: 
 

(Eq. A-6) 
 

1

2







n

XX
s

i
 

 
Where:  s = the standard deviation (always positive) 
   Xi =  ith measurement 

   X  =  the mean of the data sample 
   n =  the number of observations 
 

The expression  XX i   shows how the deviation of each measurement 

from the overall mean is incorporated into the standard deviation. 
An algebraically equivalent formula that makes computation much easier is: 

 

    

 

1

2

2










n

n

X
X

s

i

i

 

 
where the variables are defined as above. 
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Example Problem: Standard Deviation 
Using the data provided in the following table, calculate the standard deviation: 

 

iX  2

iX  

3.00 9 

2.5 6.25 

2.2 4.84 

3.4 11.56 

3.2 10.24 

------ ------ 

 iX 14.31   2

iX41.89  

 
Solution: 

    

 

1

2

2










n

n

X
X

s

i

i

 

    

 

15

5

30.14
89.41

2





s  

 

    
15

5

49.204
89.41





s  

 

    
4

90.4089.41 
s  

 

    
4

990.0
s  

 

    248.s  

 

    498.0s  
 
 
Coefficient of Variation 

The coefficient of variation (CV) is a unitless measure that allows the 
comparison of dispersion across several sets of data. It is the standard deviation 
divided by the sample mean. The CV is often used in environmental applications 
because variability (expressed as standard deviation) is often proportional to the 
mean. 
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(Eq. A-7)    XsCV   

 
Where:   s = standard 

   X  = sample mean 

 
 
Example Problem: Coefficient of Variation 
Use the data presented in the previous example problem to solve for the CV. 
    

    XsCV   

    86.2498.0CV  

    174.0CV  

 

Standard Geometric Deviation 

Dispersion of skewed data such as lognormal distributions is measured by the 
standard geometric deviation. The standard geometric deviation is very similar to 
the standard deviation. The dispersion in the log of the measurements is 
measured by the geometric standard deviation instead of the dispersion of the 
measurements which would provide an arithmetic standard deviation. The log 
calculation normalizes the data to better approximate a normal distribution. The 
formula for calculating the standard geometric deviation is: 
 

(Eq. A-8)    

 
  21

z
1




























n

n

logX
logX

antilogs

i

i

 

 
Where:  log is to the base 10 

   zs  = standard geometric deviation 

   iX  = ith measurement 

   X = the mean of the sample 
 

The following formula is mathematically identical, yet it is much easier to use 
in calculation: 

 
  21

z
1




























n

n

logX
logX

antilogs

i

i
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Example Problem: Standard Geometric Deviation 
Using the data provided in the following table, calculate the standard geometric 
deviation: 
 

iX  iXlog   2log iX  

3.0 0.4771 .2276 

2.5 0.3979 .1584 

2.2 0.3424 .1173 

3.4 0.5315 .2825 

3.2 0.5051 .2552 

 

     2541.2ilogX  

      0409.
2

ilogX  

     0810.5
2
 ilogX  [i.e. (2.2541)2] 

 
 

   

 
  21

z
1




























n

n

logX
logX

antilogs

i

i

 

 
 

   

21

z
15

5

0810.5
0409.1





















 antilogs  

 
 

   

21

z
4

0162.10409.1





 
 antilogs  

 
 

   

21

z
4

0247.0






 antilogs  

 
 

     21

z 0062.0antilogs   

 
 

     21

z 0786.0antilogs   

 
 

   1.20or 1.1984 z s  
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A.7 Distribution Curves 

Distribution curves are graphical displays of the individual data points in a data 
set and are important because they can identify patterns and trends in data that 
might go unnoticed if the data were not plotted. 

Many types of distribution curves exist: binomial, t, chi, F, normal, and 
lognormal are just a few of the existing distributions. However, in air pollution 
measurements, the normal and lognormal are the most commonly occurring 
ones. Thus, only these two will be discussed.  
 

The Normal Distribution 

One reason the normal (Gaussian) distribution is so important is that a number 
of natural phenomena are normally distributed or closely approximate it. In fact, 
many experiments when repeated a large number of times will approach the 
normal distribution curve. In its pure form, the normal curve is a continuous 
symmetrical, smooth curve shaped like the one shown in Figure A-10. Naturally, 
a finite distribution of discrete data can only approximate this curve. The normal 
curve has the following definite relations to the descriptive measures of a 
distribution. 
 

 

Figure A-10. Normal distribution curve. 
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The Mean and Median 
The normal distribution curve is symmetrical; therefore, the mean and the 
median are equal and are found at the center of the curve. Recall that, in general, 
the mean and median of an asymmetrical distribution do not coincide. 
 

The Range 
The normal curve ranges along the x-axis from minus infinity to plus infinity. 
Therefore, the range of a normal distribution is infinite. 
 
The Standard Deviation 
The standard deviation, s, becomes a most meaningful measure when related to the 
normal curve. A total of 68.2% of the area lying under a normal curve is included 
by the part ranging from 1 standard deviation below to 1 standard deviation 
above the mean. A total of 95.4% lies + 2 standard deviations from the mean 
and 99.7% lies within 3 standard deviations (Figure A-11). By using tables found 
in statistics texts and handbooks, one can determine the area lying under any part 
of the normal curve. 
 
 

 

Figure A-11. Characteristics of the normal distribution. 

These areas under the normal distribution curve can be given probability 
interpretations. For example, if an experiment yields a nearly normal distribution 
with a mean equal to 30 and a standard deviation of 10, we can expect about 
68% of a large number of experimental results to range from 20 to 40, so that 
the probability of any particular experimental result's having a value between 20 
and 40 is about 0.68. 

In applying the properties of the normal curve to the testing of data readings, 
one can determine whether a change in the conditions being measured is shown 
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or whether only chance fluctuations in the readings are represented. For a well-
established set of criterion data, a frequently used set of control limits is ± 3 
standard deviations. That is, a special investigation of data readings trying these 
limits can be used to determine whether the conditions under which the original 
data were taken have changed. Since the limits of 3 standard deviations on either 
side of the mean include 99.7% of the area under the normal curve, it is very 
unlikely that a reading outside these limits is due to the conditions producing the 
criterion set of data. The purpose of this technique is to separate the purely 
chance fluctuations from the other causes of variation. For example, if a long 
series of observations of an environmental measurement yield a mean of 50 and 
a standard deviation of 10, then control limits will be set up as 50 ± 30 - in other 
words, ± 3 standard deviations, or from 20 to 80. So, a value of 81 would suggest 
that the underlying conditions have changed, and that a large number of similar 
observations at this time would yield a distribution of results with a mean 
different (larger) than 50. 

This process of determining whether a value represents a significant change 
is closely related to the use of control charts. In setting up control limits, it is 
often necessary to divide the available data into subgroups and calculate the 
mean and standard deviations of each of these groups, making careful note of 
the conditions prevailing under each subgroup. In collecting data to establish 
control limits, as much information as possible should be gathered about the 
causes and conditions in effect during the period of obtaining a criterion set of 
data. Generally, the conditions during this period should be “normal,” or as 
much in control as possible. 

In the situation where one takes readings of some environmental quantity, 
the appearance of data beyond the control limits might suggest the starting of a 
new data grouping to further ascertain whether the underlying environmental 
variable has changed. 

It should be kept in mind that the limits of ± 3 standard deviations are 
traditional rather than absolute. They have been found through experience to be 
very useful in many control situations, but each experimenter must decide what 
limits would be most suitable for a given purpose by determining what levels of 
probability would be needed to quantify acceptance and rejection bounds. 
 

Lognormal Distributions 

Lognormal distributions can best be demonstrated by means of an example: 
If hourly sulfur dioxide concentrations are plotted against frequency of 

occurrence as in the Data Plotting Section, a skewed distribution would exist 
similar to the one in Figure A-12. Such a curve indicates that many 
concentrations are close to zero and that few are very high. Unlike temperature, 
sulfur dioxide concentrations are blocked on the left because values less than 
zero do not exist. Because numerous aids exist for normal distributions, it is 
desirable to normalize this type of distribution. By plotting the log of hourly SO2 
concentrations against the frequency of occurrence, a “bell-shaped” curve similar 
to Figure A-10 is obtained. By making this ample normalizing feature, all existing 
normal distribution tables can be used to make probability interpretations. 
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Figure A-12. Frequency vs. concentration of SO2. 
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