Module 2:

Emission Inventory Fundamentals

What is an Air Pollutant Emissions Inventory?

Inventory - a comprehensive listing by sources of air pollutant emissions in a geographic area during a specific time period.
Why Do We Need Air Emission Inventories?

- Public interest in clean air
- Fundamental Component of Air Quality Management Plan
 - To identify sources and problem areas
 - To establish a baseline for future planning
 - To develop air quality control plans and mitigation strategies
 - To establish regulations and permit conditions for industrial facilities and basis for emissions trading programs

Why Do We Need Air Emission Inventories?

- Fundamental Component of Air Quality Management Plan
 - To measure progress/changes over time to achieve cleaner air (track trends or progress toward air quality goals)
 - To determine compliance with environmental regulations
Why Do We Need Air Emission Inventories?

- To use in Modeling
 - Air quality modeling predict ambient concentration
 - Exposure modeling and risk assessments predict human health and ecological risks

- To help site ambient monitors

Why Do We Need Air Emission Inventories?

- Global Assessments
 - To understand the impact of air pollution from your country on other nations
 - To determine compliance with international treaties, for example, United Nations Framework Convention on Climate Change (UNFCCC)
What Do You Use Air Emission Inventories for in Your Country?

- Describe your country's air quality management program
 - Goals
 - Problems: Pollutants and sources
 - Reduction strategies (regulations, voluntary reductions, trading, etc.)
 - Implementation and Enforcement activities
 - Evaluation of results

- Describe how emission inventories are used in your air quality management program.

- Describe potential uses for emission inventories in your air quality management program.
Emission Inventory Characteristics

- Base year
- Geographic area
- Pollutants
- Source Categories
- Modeling parameters
- Spatial resolution
- Temporal resolution
- Speciation

Emission Inventory Characteristics: Base Year

- Base Year
 - Identifies the year for which emissions are estimated
 - Provides a benchmark for comparison with previous and future inventories compiled for different years
 - Provides a common basis for all the emission estimates
- Year is selected based on purpose of the inventory, regulatory requirements, and data availability
Emission Inventory Characteristics: Geographic Area

- Establishes geographic domain for the inventory
- Determines the sources to be included in the inventory based on their location
- Can be based on political boundaries (i.e., city, province, or country borders), air shed boundaries, or other (possibly arbitrary) considerations
- Is determined based on the purpose of the inventory
 - City-, district-, province-level, national analyses of air quality impacts (e.g., 100 to 500 km²) using modeling

Emission Inventory Characteristics: Pollutants

Pollutants selected based on the purpose of the inventory
- Particulate matter analysis: PM₁₀ and PM₂.₅, secondary aerosols
- Ozone analysis: NOₓ, VOC primarily (can include other carbon compounds)
- Visibility analysis
 - NOₓ, SOₓ, VOC, CO, PM₁₀, PM₂.₅, NH₃
 - Elemental and organic carbon (EC/OC)
Emission Inventory Characteristics: Pollutants

- Greenhouse gases assessment
 - CH₄, N₂O, CO₂
 - HFC’s, PCF’s, and SF6

- Ozone depleting substances (ODS)
 - CFC’s, HCFC’s, halons, CCl₄, methyl chloroform (C₂H₃Cl₃), methyl bromide (CH₃Br)

Emission Inventory Characteristics: Pollutants

- Air toxics analysis
 - Important to use CAS #s
 - Keep in mind that toxicity varies by chemical
 - Carcinogens
 - Non-carcinogens
 - Compound groups – Report individual compounds by CAS # for risk assessments
Emission Inventory Characteristics: Pollutants

Air toxics analysis: Compounds Groups
- **Polycyclic Organic Matter:** "Includes organic compounds emitted from combustion sources with more than one benzene ring, and which have a boiling point greater than or equal to 100°C." Examples include polycyclic aromatic hydrocarbons (PAHs), chrysene, benzo(a)pyrene, and naphthalene.
- **Dioxins and Furans:** Compounds can be grouped by 2,3,7,8 TCDD Toxic Equivalents (TEQs). TEQs are multipliers for some dioxin and furan congeners to get to a common basis of toxicity.
- **Diesel PM:** Mixture of particles that is a component of diesel exhaust. Diesel PM has Cancer and noncancer health effects.
- **Cyanides**
- **Glycol ethers**
- **Xylenes and Cresols (ortho-, meta-, and para-)**
- **Metals:**
 - Antimony, Beryllium, Cadmium, Cobalt, Manganese, Selenium
 - Chromium: report as hexavalent and trivalent
 - Lead: report as Organic and inorganic
 - Mercury: report as Particulate, gaseous elemental, and gaseous divalent
 - Nickel: report as Nickel subsulfide and other nickel compounds

Emission Inventory Characteristics: Source Categories

- **Anthropogenic (man-made) and Natural sources may be included in an inventory.**
- **Anthropogenic Sources include:**
 - Stationary Point and Nonpoint sources
 - Mobile Onroad and Nonroad sources
- **Natural sources include:**
 - Biogenic emissions from vegetation
 - Geogenic emissions from soil, volcanoes, and geothermal activities
- **Wildfires and wind erosion are classified as either anthropogenic or natural by different countries**
- **Indoor and Other source categories**
Point Sources

- Emissions may be released from large or small point sources. Examples include electrical generating facilities, chemical manufacturing plants, secondary metal smelters, etc.
- Emissions may be released from:
 - Equipment leaks,
 - Transfer of materials from one location to another, or
 - Emissions stacks or vents

Point Source Considerations

- May be defined based on
 - Point source cutoffs / thresholds (e.g., 12 metric tons per year NOx)
 - Regulations or laws (e.g., all petroleum refineries are point sources)
 - Location or regulatory jurisdiction (e.g., regulated by city, state, or federal government)

- Detail needed:
 - Plant, unit, process, stack (emission release point)
 - Pollutants
 - Operation schedule (for example, 7 days a week, 24 hr/day)
 - Location, stack parameters, control device info, Process description (for example, SCC), Facility description (for example, NAICS code)
Nonpoint Sources

- Stationary industrial, commercial, institutional facilities and businesses that are too small or numerous to be categorized as a point source
 > Examples: dry cleaners, gasoline stations

- Nonpoint sources emit over a geographic “area” versus point sources that emit over a geographic “point”
 > Examples: residential cooking and heating, wind erosion of vacant lots and agricultural lands, dust from vehicle travel over paved and unpaved roads, consumer solvent use, wildfires

Nonpoint Source Considerations

- May be defined based on:
 > Thresholds
 > Regulations

- Detail needed:
 > County level
 > Pollutants
 > Process description (for example, SCC)

- Includes source categories that overlap with point source inventory
 > Point source inventories often include small sources such as dry cleaners and gas stations
 > Due to differences in source type definitions and inventory procedures used, the potential for double counting of point and nonpoint source emissions exists
 > As required, point source contributions to some nonpoint source categories must be removed from nonpoint inventories
Mobile Sources

- Pollutants
 - \(\text{VOC}, \text{PM}, \text{CO}, \text{Lead}, \text{NO}_x, \text{SO}_2 \)
 - Greenhouse Gases: \(\text{CO}_2, \text{N}_2\text{O}, \text{CH}_4 \)
 - 20 volatile organic and metal air toxics
 - Diesel particulate matter and diesel exhaust organic gases
- Includes Onroad and Nonroad Sources

Mobile Sources: Onroad

Onroad - Vehicles found on roads and highways.
- Fuel types - Vehicles may operate on any fuel, including petrol, diesel, propane, methanol, and electricity
- Vehicle classifications depend on methodology used to estimate emissions:
 - Passenger vehicles, trucks and vans
 - Heavy duty trucks with trailers
 - Buses and motor homes
 - Taxis
 - Two and three-wheeled vehicles designed for onroad use
- Emission Types include:
 - Exhaust emissions
 - Evaporative emissions
Mobile Sources: Nonroad

Nonroad - Mobile sources not found on roads
- Specific categories of nonroad sources vary between inventories
 - Aircraft (may be included in nonpoint sources)
 - Locomotives (may be included in nonpoint sources)
 - Boats and other marine vessels (may be included in nonpoint sources)
 - 2/4 stroke engines in construction, industrial, and agricultural equipment, lawn and garden equipment, etc.

Mobile Source Considerations

- Contribution by source category varies geographically
- May be defined by regulations
- Detail needed:
 - County level
 - Pollutants
 - Process description (for example, SCC)
Natural Sources

- Natural biological and geological phenomenon which generate air emissions (nonanthropogenic)
- Biogenic emissions:
 - VOC emissions from vegetation
- Geogenic emissions:
 - NO$_x$ emissions from soil (denitrification)
 - SO$_x$ emissions from volcanoes and geothermal activity
- May include wind erosion, wildfires

Indoor Sources

- Indoor air can become contaminated from numerous sources
- Indoor air can have significantly higher concentrations of air pollutants than outdoor air
Other Types of Sources

There are a number of other important sources of air pollutants that aren’t so easy to categorize or count:

- Accidental releases
- Long-range transport of air pollutants
- Historical background (for example, carbon tetrachloride)

Emission Inventory Characteristics:
What is Air Quality Modeling?

Determination of ambient air concentrations and deposition of pollutants by mathematically simulating their “fate & transport” in the atmosphere.
Emission Inventory Characteristics: Why Model?

- Too costly to monitor for every pollutant everywhere
 - However, limited monitoring data are needed to confirm modeling results
- To predict what will happen...
 - New source
 - New strategies
 - Future Growth
- Can tell you what sources are contributing to the ambient air concentrations – includes transport from other areas
- Can help you decide where to put monitors

Emission Inventory Characteristics: Modeling Inventories

- Modeling inventories have more specific requirements than other more general tracking inventories
- Modeling inventories need
 - Geographically resolved emissions (gridded or specific dimensions) – spatial allocation of emissions
 - Hourly time resolution – temporal allocation of emissions
 - Pollutant species (“model species”) to meet needs of AQ model chemical/physical algorithms
 - Risk assessors want modeled species to match health effects data
 - Quality Assurance/Quality Control of data
 - All sources represented
 - Anthropogenic, Biogenic (grid models)
Basic Types of Models

- Eulerian (grid): Observer "watches the plume go by"
- Lagrangian (plume/puff): Observer "follows along with the plume"

Comparison of Basic Model Types

<table>
<thead>
<tr>
<th>Grid (Eulerian)</th>
<th>Gaussian (Lagrangian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(examples: CMAQ, CAMX, REMSAD, UAM)</td>
<td>(examples: ISCST3, AERMOD)</td>
</tr>
<tr>
<td>Photochemical criteria pollutants (Ozone, PM), Air toxics, Mercury</td>
<td></td>
</tr>
<tr>
<td>Long range transport</td>
<td>Near source (50km)</td>
</tr>
<tr>
<td>Atmospheric Chemistry: Secondary formation</td>
<td>Atmospheric Chemistry: Linear decay</td>
</tr>
<tr>
<td>Concentrations uniform within grid cells.</td>
<td>Captures concentrations gradients at fine scales - receptors at any point in space</td>
</tr>
<tr>
<td>Grid cells 36, 12, and 4km</td>
<td>Can run to get impacts of one source or groups of sources without having to consider all sources</td>
</tr>
<tr>
<td>Requires all sources (including biogenics) - sources not additive</td>
<td>Can be Easy to run (e.g., for single source)</td>
</tr>
<tr>
<td>Complex to run</td>
<td>Captures concentrations gradients at fine scales - receptors at any point in space</td>
</tr>
<tr>
<td>Concentrations uniform within grid cells.</td>
<td></td>
</tr>
</tbody>
</table>
Challenges in Preparing an Inventory For Modeling

- Different air quality models have different emission needs
 > Gaussian vs. Grid
- Inventory information doesn’t match those needs
- As inventory information evolves -- emission model processors must keep up with the changes
- Terminology can be different from inventory to processor to air quality model

Inventory preparers should understand the inventory and its use in specific air quality models.

Emission Inventory Characteristics: Modeling Point Sources

- Inventory Perspective: Emissions occur at a facility – at a known location
- AQ Model Perspective:
 > Gaussian AQ Model Perspective: Point sources are vertical stacks
 > Grid Model Perspective: Point sources allocated into grid cell based on lat/lon, and vertically allocated based on plume rise, some can be treated with plume-in-grid algorithm
- Key inventory elements
 > Facility/Process/Stack-Level emissions, by pollutant
 > Geographic coordinates
 > Emission release point parameters
 - Stack heights
 - Stack diameters
 - Flow rates
 - Temperatures
 > Source Category Information
 > Temporal information (start/end, seasonal throughput)
 > Control Information (for projections)
Emission Inventory Characteristics: Modeling Nonpoint and Nonroad Sources

- Non-point and Nonroad emissions treated similarly
- Inventory-perspective: county-level emissions
- AQ model perspective: non-stack
 - Gaussian AQ model perspective: flux or "area" source
 - Grid AQ model perspective: distributed evenly across grid cell, all in first layer
- Key inventory elements
 - Category-Level Emissions (process/industrial category), by pollutant
 - Province, City
 - Source Category Information
 - Temporal information (start/end, seasonal throughput)
 - Control information (projections)

Emission Inventory Characteristics: Modeling Onroad Sources

- National Inventory-perspective: county-level emissions
- AQ model perspective: non-stack
 - Gaussian AQ model perspective: flux or "area" source can be gridded or provided as elongated rectangles
 - Grid AQ model perspective: distributed evenly across grid cell, all in first layer
- Key inventory elements
 - Category-Level Emissions (vehicle type/road class), by pollutant
 - Emission process should be included for grid models
 - Province, City
 - For local scale analysis, you can create a link-based inventory by running MOBILE6 model using link-specific activity
The Big Picture for Modeling

- Prepare Mass Inventory
- Format Inventory for Emission Processor
- Emission Processor Input (Emissions & Other Data)
- Emissions Processor
- Other Air Quality Model Inputs
- Air Quality Model
- Modeling Results

Functions of Emissions Processor in Modeling

- Spatial Allocation – proper resolution
- Temporal Allocation – hourly
- Pollutant Speciation – model species
- Quality Assurance/Quality Control
- Emission Projections (optional)
Emission Inventory Characteristics: Spatial Resolution

- Establishes the detail of the geographic location of the sources
- Determined based on the purpose of the inventory
 - National-level analysis => Single national estimate for each major source type and pollutant
 - Modeling inventory => Source-specific emissions allocated based on location coordinates, source-category emissions allocated based on "grids" (e.g., 1 to 50 km²)
- Basis varies between point sources and what is used for nonpoint and mobile sources
- Modeling inventories have more specific requirements than general tracking inventories
Modeling Domain Example:
China Air Quality Modeling

Modeling: Spatial Allocation of County-level Emissions to Grid

Concept:
• Use surrogates to allocate county level emissions for county-level sources.
• Example: use population data to allocate consumer product emissions

This Grid cell gets 3/20 of Orange county’s consumer product emissions
Emission Inventory Characteristics: Temporal Resolution

- Describes the variability of emissions over time
- Determined based on the purpose of the inventory
 > Resolution can be annual, seasonal, monthly, daily, hourly, or less
 > Modeling inventory => can be hourly or by second

Emission Inventory Characteristics: Temporal Resolution - Modeling

- Typically from annual (inventory) to what model needs

<table>
<thead>
<tr>
<th>Model</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMS-HAP/ASPEN</td>
<td>3-hour time blocks (every day is treated the same)</td>
</tr>
<tr>
<td>EMS-HAP/ISCST3</td>
<td>24-hourly, 4 season, 3 day type factors</td>
</tr>
</tbody>
</table>

- Model Processors uses temporal profiles
 Example: temporal profile for aircraft emissions for summer weekday

Hour of the Day

0 5 10 15 20

0 1 2 3 4 x 10^{-7}
Temporal Resolution Example:

- A supplemental boiler at a factory is used for increased production in the months of December - February (90 days/year) and emits 500 metric tons/year of CO.
- Calculate annual operation in seconds:
 \[= 90 \text{ days} \times 10 \text{ hours/day} \times 3,600 \text{ seconds/hour}\]
 \[= 3.24 \times 10^6 \text{ seconds}\]
- Calculate CO emissions in grams/second (g/s):
 \[= \frac{(500 \text{ Mg} \times 10^6 \text{ grams})}{3.24 \times 10^6} \]
 \[= 154.3 \text{ g/s}\]

Emission Inventory Characteristics: Speciation

- Disaggregates inventory pollutants into individual chemical components or groups.
- Determined based on the inventory purpose:
 - Visibility analysis: elemental carbon/organic carbon
 - Ozone analysis: Aromatics, paraffins, VOCs, etc.
 - Air toxic risk assessment:
- Speciation tools exist on EPA's web site (see http://www.epa.gov/ttn/chief/emch/speciation/index.html) – only applicable for VOC and PM modeling; not appropriate for air toxics.
Air Toxics Speciation: Modeling Metal Compounds

- Specific metal HAPs should be reported in the inventory, if available
- Model mass of metal only
 > For example, Emission modelers compute the mass of manganese in manganese oxide
- Specific compound may be needed for risk assessment or chemistry considerations in model
 > For example, To determine whether it is hexavalent chromium or trivalent chromium, is it nickel subsulfide?
- For mercury, if exact chemical compounds not known, provide amount of mass as "divalent particulate," "divalent gas," and "elemental"
 > These three are "model species" in numerous grid models (for example, REMSAD, CMAQ)
 > Ideally, emissions should be broken out by specific chemical and by specific form (gas vs. particulate)

Air Toxics Speciation for Modeling Example

Example: Manganese Coarse and Fine Pollutant Groups

<table>
<thead>
<tr>
<th>Inventory Species</th>
<th>Model Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese nitrate</td>
<td>Manganese coarse</td>
</tr>
<tr>
<td>Manganese dioxide</td>
<td>Manganese fine</td>
</tr>
<tr>
<td>Manganese tetroxide</td>
<td></td>
</tr>
<tr>
<td>Manganese napthenate</td>
<td></td>
</tr>
<tr>
<td>Manganese & compounds</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td></td>
</tr>
<tr>
<td>Manganese tallate</td>
<td></td>
</tr>
<tr>
<td>Manganese sulfate</td>
<td></td>
</tr>
</tbody>
</table>

- Remove non-manganese mass
- Partition into coarse and fine particulate matter
Emissions Inventory Development Approaches

- Top-Down approach
- Bottom-Up approach
Top-Down Approach

- Methodology:
 > General emission factors combined with high level (national) activity data (e.g., emission factor x national coal consumption) to estimate emissions in country or region
 > National- or regional-level emissions estimates scaled to the inventory domain based on surrogate data (geographic, demographic, economic data)
- Typically used when:
 > Local data are not available
 > The cost to gather local information is prohibitive
 > The end use of the data does not justify the cost
- Advantages: Requires minimum resources
- Disadvantages:
 > Emissions generally have high level of uncertainty
 > Loss of accuracy in emission estimates

Bottom-Up Approach

- Methodology
 > Uses source-specific data (for point sources) and category-specific data at the most refined spatial level (for nonpoint and mobile sources)
 > Emission estimates for individual sources (and source categories) are summed to obtain domain-level inventory
- Typically used when:
 > Source/category-specific activity or emissions data are available
 > End use of inventory justifies the cost of collecting site-specific data (e.g., for ozone control strategy demonstration)
- Advantages: Results in more accurate estimates than a top-down approach
- Disadvantages: Requires more resources to collect site-specific information than a top-down approach
Emission Estimation Techniques

How Do I Choose Emission Estimation Methods?

- Choice of methods depends on:
 - Pollutant and source category priorities
 - Intended use of the inventory
 - Resources
 - Availability of data
 - Compromise between method accuracy and cost to implement
Source Category Estimation Methods

- **Point Source Methods**
 - Continuous Emission Monitor (CEM)
 - Source tests
 - Material balance
 - Emission factor x activity factors
 - Fuel analysis
 - Emission estimation models
 - Engineering judgment

- **Nonpoint Source Methods**
 - Surveys and questionnaires
 - Material balance
 - Emission factor x activity factors
 - Emission models

- **Mobile**
 - Emission models

Estimation Methods: A Continuous Emission Monitoring (CEM) System

- Sampling is continuous
- CEMs measure and record actual emissions during the time period the monitor is operating and the data produced can be used to estimate emissions for different operating periods.
- CEMs can be required by permit conditions for some pollutants

Opacity Monitor

Sampling Interface

Analyzers

Data Acquisition System
Estimation Methods: A Continuous Emission Monitoring (CEM) System

Short term emission measurements typically taken from a stack or vent

- Includes:
 - Individual test at facility
 - Testing at similar facilities
 - Pooled source testing

Sampling can be infrequent
(1 stack test every 5 years)
> Estimation Methods: Source Sampling
Estimation Methods: Source Sampling

- Emission rates generally reported as concentrations which must be converted to mass units for use in emission inventories
- Summarize emissions for each pollutant in terms of:
 - Mass loading rate
 - Emission factor
 - Flue gas concentration
- Results depend upon air pollution control device performance and design
- Screening measurements can be indicators of emissions, potential compliance issues
Estimation Methods: Fuel Analysis

- Used to predict emissions based on the application of conservation laws
- \[E = Q_f \times \text{Pollutant in fuel} \times \left(\frac{\text{MW}_p}{\text{MW}_f} \right) \]
 where:
 \[Q_f \] throughput of the fuel, mass rate (e.g. lb/hr)
 \[\text{MW}_p \] molecular weight of pollutant emitted (lb/lb-mole)
 \[\text{MW}_f \] molecular weight of pollutant in fuel (lb/lb-mole)

Estimation Methods: Emissions Models

- Used when
 > Calculations are very complex
 > Combination of parameters has been identified that affect emissions, but individually, do not provide a direct correlation
- Used to calculate emission factors or mass emissions for specific source categories
 > Examples: Mobile exhaust and evaporative emissions, storage tank evaporation and breathing losses, VOCs from wastewater treatment facilities
- Generally require that a significant amount of information be known about the source(s) being estimated
 > Examples: meteorological conditions in the source area, tank capacity and color, amount and chemical make-up of wastes treated
- Mechanistic and multivariate models
Emissions Models

U.S. EPA models include:

- **TANKS** - volatile liquid storage tanks
 (http://www.epa.gov/ttn/chief/software/tanks/index.html)
- **WATER9** - wastewater treatment
 (http://www.epa.gov/ttn/chief/software/water/index.html)
- **MOBILE6** – onroad motor vehicles
 (http://www.epa.gov/otaq/mobile.htm)
- **LandGEM** - landfills
 (http://www.epa.gov/ttn/catc/products.html#software)

Emission Factors

- **Definition:** a ratio that relates the quantity of a pollutant released to a unit of activity
- **Allow development of**
 generalized estimates of typical emissions from source categories or individual sources within a category
- **Estimates the rate at which a pollutant is released to the atmosphere as a result of some process**
Types of Emission Factors

Process-Based Emission Factors
- Natural Gas Boiler
 - kg/10^6 m^3
- Vapor Degreaser
 - kg/hr/m^2
- Battery Manufacturing
 - kg/10^3 batteries

Census-Based Emission Factors
- Per Capita
 - kg/person/yr
- Per Employee
 - kg/employee/yr

Published Sources of Emission Factors

- U.S. AP-42 Compilation of Air Pollutant Emission Factors
- U.S. Emissions Inventory Improvement Program, EIIP
- U.S. Factor Information REtrieval (FIRE) Data System
 http://www.epa.gov/ttn/chief/software/fire/index.html
- European Environment Agency – CORINAIR
- Intergovernmental Panel on Climate Change (IPCC) database
 http://www.ipcc-nggip.iges.or.jp/
Calculating Emissions Using Emission Factors

- Emissions = $EF \times AD \times (1 – CE/100)$
 - $EF = \text{emission factor}$
 - $AD = \text{activity data (throughput)}$
 - $CE = \text{overall control efficiency (\%) = } (\text{CAP} \times \text{CON})/100$
 - $\text{CAP} = \% \text{ of the emissions stream captured by the control}$
 - $\text{CON} = \% \text{ of pollutant removed from the emissions stream}$
 - Activity data
 - Process weight rates = Mg/year, kg/hour, liter/hour
 - Fuel consumption rates = BTU/year, kJ/hour
 - Can be expressed in terms of production rates

Estimate VOC Emissions from Industrial Fuel Combustion

- Given:
 - Quantity of fuel used = 10,000,000 liters/year
 - VOC emission factor = 88 kg/10⁶ m³
 - CAP = 80% and CON = 90%
- Estimate overall control efficiency
 - $CE = (80 \times 90)/100 = 72\%$
- Convert fuel used in liters/year to m³
 - $10,000,000/1,000 = 10,000 \text{ m}^3$
- Calculate annual emissions
 - Emissions = $EF \times AD \times (1 – CE/100)$
 - $88 \text{ kg/10}^6 \text{ m}^3 \times (10,000 \text{ m}^3/10^6) \times (1 – 72/100) = 0.25 \text{ kg/year}$
Surveying

- Questionnaires are used to collect activity, controls, and emissions data from specific source types, categories
- Can be used to either:
 > Collect all information including emissions estimates and necessary data fields
 > Collect activity data and information about facility and its operations
 - If emissions are not included as part of survey, agency develops emission estimates using activity data collected by survey and emission factor data or source test data

Surveying

- Surveys can be conducted by various means
 > Workshops
 > Telephone
 > Internet
 > Visits to individual facilities by survey staff
- Keys to successful surveys
 > Well planned field effort
 > Well trained survey staff
 > Efficiently designed survey instrument
 > Quality assurance of data at various steps in the process
Point Source Survey Process

Develop Questionnaire

Industrial Plant 1

Industrial Plant 2

Industrial Plant 3

Survey All Facilities

Complete Questionnaires for Each Point Source

Estimate Facility Emissions for Surveyed Point Sources

Survey Elements

- Cover Letter
- Questionnaire Instructions
 - Clarity of Instructions
 - Questionnaire responses must provide both the descriptive information desired and the correct numerical data
 - Units of measurement, method of calculations and conversions, and code number instructions should be put on the questionnaire itself and not explained in the instructions
 - Questionnaire Design
 - General Approach
 - Pollutants, Source Categories Coverage
 - Emissions-Based vs. Use or Production Approach
 - Minimize length of questionnaire
 - Clear statement from which the respondent can determine whether the questionnaire is applicable
 - Tiered Approach
- Check the effectiveness of questionnaire
Estimation Methods: Material Balance

Used:

• When source test data, emission factors, or other developed methods are not available
• Where accurate measurements can be made of all process parameters
• For processes where material does not react to form secondary products or does not undergo significant chemical change
• For processes like solvent degreasing operations, and surface coating operations

Estimation Methods: Material Balance

• Approach considers all inputs of a material and all possible fates for the material after passing through the process, including direct air emissions, fugitive air emissions, solid and liquid waste streams, and residual product content
 > Uses measurements of various components of a process to determine air emissions:

 \[
 \text{Air emissions} = \text{input} - \text{liquid emissions} - \text{solid wastes} - \text{products} - \text{by products} - \text{recycled material}
 \]

• Commonly used to estimate emissions from solvent usage based on contents of various solvents
 > Solvent degreasing operations
 > Surface coating operations
Examples of Material Balance

VOC Emission
Fresh Solvent
Solid Waste
Waste Solvent
Assume all solvents in paint are evaporated

Sulfur Dioxide (SO₂) Emissions
Sulfur (S) in Fuel
Paint VOCs
Assume all sulfur in a fuel is converted to SO₂ during the combustion process

Assume waste solvent is sent to a reprocessor and solid waste is sent to a treatment facility

Estimation Methods: Engineering Judgment (Extrapolation)

• Last resort to be used only if none of the methods described can be used to generate accurate emission estimates
• Provides an “order of magnitude” estimate with significant uncertainty
• Scaling emissions estimates to create another inventory using scaling parameters
 > Production quantity
 > Material throughput
 > Land area
 > Number of employees
 > Population
Summary: Emission Inventory Fundamentals

- Inventories are the fundamental building blocks of any air quality management program and are used for a variety of purposes.
- Inventory characteristics (e.g., year, pollutants, sources, spatial and temporal resolution) are determined by the uses of the inventory.
- Modeling inventories have more specific requirements than more general tracking inventories.
- Emission Inventories can be developed using a top-down or bottom-up approach.
- A variety of emission estimation methods exist and are determined by the inventory uses, pollutant and source category priorities, resources, and data available.

Questions or Comments?