Inspection of Particle Control Devices

Student Manual

APTI Course 445
Third Edition

Authors

Jerry W. Crowder, Ph.D., P.E.
Crowder Environmental Associates, Inc.
6946 Dove Creek
Wylie, Texas 75098

John R. Richards, Ph.D., P.E.
Air Control Techniques, P.C.
301 E. Durham
Cary, NC 27513

Developed by

The University of Texas at Arlington
USEPA Cooperative Agreement No. CT-902911
This page intentionally left blank.
TABLE OF CONTENTS

Chapter 1 Baseline Inspection Techniques

<table>
<thead>
<tr>
<th>Responsibilities of Inspectors</th>
<th>1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance Evaluation</td>
<td>1-2</td>
</tr>
<tr>
<td>Testing and Sampling</td>
<td>1-2</td>
</tr>
<tr>
<td>Agency Representation</td>
<td>1-2</td>
</tr>
<tr>
<td>Litigation Assistance</td>
<td>1-2</td>
</tr>
<tr>
<td>Citizen Complaint Investigation</td>
<td>1-3</td>
</tr>
<tr>
<td>Other Responsibilities</td>
<td>1-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On-Site Compliance Inspections</th>
<th>1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels of Inspection</td>
<td>1-4</td>
</tr>
<tr>
<td>Level 1</td>
<td>1-4</td>
</tr>
<tr>
<td>Level 2</td>
<td>1-4</td>
</tr>
<tr>
<td>Level 3</td>
<td>1-4</td>
</tr>
<tr>
<td>Level 4</td>
<td>1-5</td>
</tr>
<tr>
<td>Major Elements of Inspection</td>
<td>1-5</td>
</tr>
<tr>
<td>File Review</td>
<td>1-5</td>
</tr>
<tr>
<td>Inspection Preparation</td>
<td>1-6</td>
</tr>
<tr>
<td>Pre-Inspection Meeting</td>
<td>1-6</td>
</tr>
<tr>
<td>Plant Inspection</td>
<td>1-6</td>
</tr>
<tr>
<td>Post-Inspection Meeting</td>
<td>1-6</td>
</tr>
<tr>
<td>Inspection Report Preparation</td>
<td>1-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inspection Analyses</th>
<th>1-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Comparisons</td>
<td>1-7</td>
</tr>
<tr>
<td>Comparison with Similar Units at Other Plants</td>
<td>1-8</td>
</tr>
<tr>
<td>Baseline Analyses</td>
<td>1-9</td>
</tr>
<tr>
<td>Limitations of Inspections</td>
<td>1-12</td>
</tr>
</tbody>
</table>

| Review Problems | 1-13|

Chapter 2 Cyclones

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclone Systems</td>
<td>2-3</td>
</tr>
<tr>
<td>Large Diameter Cyclones</td>
<td>2-3</td>
</tr>
<tr>
<td>Small Diameter Multi-Cyclones</td>
<td>2-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inspection</th>
<th>2-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 2: Visible Emissions</td>
<td>2-10</td>
</tr>
<tr>
<td>Level 2: Fallout of Large Diameter Particles (Large Diameter Cyclones)</td>
<td>2-10</td>
</tr>
<tr>
<td>Level 2: Static Pressure Drop</td>
<td>2-10</td>
</tr>
<tr>
<td>Level 2: Gas Inlet and Outlet Temperatures</td>
<td>2-11</td>
</tr>
<tr>
<td>Level 2: Gas Inlet and Outlet Oxygen Concentrations</td>
<td>2-12</td>
</tr>
<tr>
<td>Level 2: Air Infiltration</td>
<td>2-12</td>
</tr>
<tr>
<td>Level 2: Dents of Weld Failures (Large Diameter Cyclones)</td>
<td>2-12</td>
</tr>
</tbody>
</table>
Chapter 3 Fabric Filters

Operating Principles
- Particle Collection
- Emissions Through Holes, Tears and Gaps
- Filter Media Blinding and Bag Blockage
- Fabric Filter Applicability Limitations

Fabric Filter Systems
- Shaker Fabric Filters
- Reverse Air Fabric Filters
- Pulse Jet Fabric Filters
- Cartridge Filters
- Fabrics

Inspection
- Basic Level 2: Stack Visible Emissions
- Basic Level 2: Opacity Monitor Data
- Basic Level 2: Static Pressure Drop
- Basic Level 2: Inlet and Outlet Gas Temperatures
- Basic Level 2: Compressed Air Pressures (Pulse Jet Systems)
- Basic Level 2: Air Infiltration
- Basic Level 2: Corrosion
- Basic Level 2: Fugitive Emissions
- Follow-up Level 2: Opacity Monitor Quality Assurance Checks
- Follow-up Level 2: Operating and Cleaning Times
- Follow-up Level 2: Compressed Air Leaks (Pulse Jet System)
- Follow-up Level 2: Inoperative Diaphragm Valves (Pulse Jet System)
- Follow-up Level 2: Clean Side Conditions
- Follow-up Level 2: Bag Failure Records
- Follow-up Level 2: Internal Inspection Reports
- Follow-up Level 2: Start-up/Shut-down Practices
- Follow-up Level 2: Tracer Dust Test Results

Review Problems
- Video Problem
- General Problems

Chapter 4 Wet Scrubbers

Operating Principles
- Inertial Impaction
- Brownian Motion
- Liquid-to-Gas Ratio
Inspection of Particle Control Devices

Mist Elimination 4-3
Chevrons 4-3
Mesh and Woven Pads 4-3
Cyclones 4-4
Gas Cooling 4-5
Liquid Recirculation 4-5
Alkali Addition 4-5
Wastewater Treatment 4-6
Wet Scrubber Capabilities and Limitations 4-6

Scrubber Systems 4-7
Spray Tower Scrubbers 4-8
Packed Bed Scrubbers 4-9
Tray Scrubbers 4-11
Ionizing Wet Scrubbers 4-12
Venturi Scrubbers 4-12

Inspection 4-15
Basic Level 2: Visible Emissions 4-16
Basic Level 2: Droplet Reentrainment 4-17
Basic Level 2: Scrubber Static Pressure Drop 4-18
Basic Level 2: Liquid Flow Rate 4-19
Basic Level 2: Inlet and Outlet Gas Temperature 4-21
Follow-up Level 2: Mist Eliminator Static Pressure Drop 4-21
Follow-up Level 2: Spray Nozzle Supply Header Pressure 4-22
Follow-up Level 2: Recirculation Pump Discharge Pressure 4-23
Follow-up Level 2: Gas Cooler Outlet Gas Temperature 4-24
Follow-up Level 2: Evaporative Cooler Spray Liquid Quality 4-24
Follow-up Level 2: Liquid pH 4-24
Follow-up Level 2: T-R Set Electrical Data (Ionizing Wet Scrubbers) 4-25
Follow-up Level 2: Corrosion and Erosion 4-25
Follow-up Level 2: Component Failure Records 4-26
Follow-up Level 2: Internal Inspection Reports 4-26

Review Problems 4-27

Chapter 5 Electrostatic Precipitators 5-1

Operating Principles 5-1
Precipitator Energization 5-1
Particle Charging and Migration 5-4
Dust Layer Resistivity 5-5
Sectionalization 5-10
Discharge Electrodes 5-11
Collector Plate Spacing 5-12
Specific Collection Area 5-12
Aspect Ratio 5-13
Instrumentation 5-13

Precipitator Systems 5-14
Chapter 6 Measurement of Inspection Parameters

Measurement Ports 6-1
Static Pressure Measurement 6-2
Temperature Measurement 6-4
Oxygen Measurement 6-6
pH Measurement 6-8
Use of Grounding Cables 6-8

Chapter 7 Flowchart Preparation

Flowchart Symbols 7-1
Major Components 7-1
Minor Components 7-2
Material Streams 7-2
Instruments 7-4
Materials of Construction 7-5
Emission Points 7-5
Flowchart Diagrams 7-6
Examples 7-6
Applications 7-8
Example Problem 1 7-8
Example Problem 2 7-12
Review Problems 7-15
LIST OF FIGURES

Figure 2-1 Cyclone fractional efficiency curves 2-2
Figure 2-2 Large diameter cyclones 2-3
Figure 2-3 Types of cyclone inlets 2-4
Figure 2-4 Special outlet configuration for large diameter cyclones 2-5
Figure 2-5 Series and parallel arrangement of cyclones 2-5
Figure 2-6 Types of solid discharge valves 2-6
Figure 2-7 Multi-cyclone collector 2-7
Figure 2-8 Cyclone tube used in multi-cyclone collector 2-8
Figure 2-9 Cross hopper recirculation 2-9
Figure 2-10 Static pressure drop of a cyclone collector 2-11

Figure 3-1 Fabric filter fractional efficiency curve 3-2
Figure 3-2 Emissions as a function of air-to-cloth ratio 3-4
Figure 3-3 Shaker fabric filter 3-7
Figure 3-4 Reverse air collector hangers and tube sheet attachment 3-8
Figure 3-5 Reverse air cleaning system 3-8
Figure 3-6 Pulse jet fabric filter 3-10
Figure 3-7 Components of a pulse jet cleaning system 3-11
Figure 3-8 Pulse jet compressed air manifold and valves 3-12
Figure 3-9 Pleated cartridge filter element 3-13
Figure 3-10 Flat cartridge filter element 3-14
Figure 3-11 Woven fabric 3-15
Figure 3-12 Felted fabric 3-16
Figure 3-13 Reverse air system static pressure profile 3-21
Figure 3-14 Possible temperature nonuniformity in a fabric filter system 3-22
Figure 3-15 Clean side of a top access pulse jet baghouse 3-25
Figure 3-16 Compartment bag layout sketch 3-26
Figure 3-17 Bag failure rate chart 3-27

Figure 4-1 Chevron mist eliminator 4-4
Figure 4-2 Mesh pad mist eliminator 4-4
Figure 4-3 Wet scrubber fractional efficiency curve 4-7
Figure 4-4 Spray tower scrubber 4-8
Figure 4-5 Common types of packing materials 4-9
Figure 4-6 Vertical packed bed scrubber 4-10
Figure 4-7 Horizontal packed bed scrubber 4-10
Figure 4-8 Impingement plate scrubber 4-11
Figure 4-9 Ionizing wet scrubber 4-13
Figure 4-10 Fixed throat venturi scrubber 4-14
Figure 4-11 Adjustable throat venturi scrubber 4-15
Figure 4-12 Visible emission of a scrubber plume 4-16
Figure 4-13 Drainage pattern on wet scrubber stack 4-17
Figure 4-14 Efficiency of two venturi scrubbers serving BOPF operation 4-18
Figure 5-1 Precipitator field energization 5-2
Figure 5-2 Voltage-current curve 5-3
Figure 5-3 Typical particle size efficiency relationship for electrostatic precipitators 5-6
Figure 5-4 Conductivity paths through dust layer 5-8
Figure 5-5 Resistivity-temperature relationship 5-9
Figure 5-6 Wire-type discharge electrodes 5-12
Figure 5-7 Gas passage between collection plates 5-15
Figure 5-8 Typical dry, negative corona type electrostatic precipitator 5-16
Figure 5-9 Gas distribution screens at the precipitator inlet 5-17
Figure 5-10 Arrangement of fields and chambers 5-17
Figure 5-11 T-R set, support insulator, discharge electrode frame, discharge electrodes 5-18
Figure 5-12 Gauges present on the control cabinet for each precipitator field 5-19
Figure 5-13 High voltage frame support insulators 5-19
Figure 5-14 Anti-sway insulator with short-circuiting across the surface 5-21
Figure 5-15 Roof-mounted rapper 5-22
Figure 5-16 Side-mounted rapper 5-22
Figure 5-17 Components of a precipitator hopper 5-23
Figure 5-18 Flowchart of a wet, negative corona precipitator 5-24
Figure 5-19 Vertical flow wet, negative corona precipitator 5-25
Figure 5-20 Horizontal flow wet, negative corona precipitator 5-26
Figure 5-21 Wet, positive corona precipitator 5-28
Figure 5-22 Opacity baseline data 5-31
Figure 5-23 Low resistivity related data shifts 5-33
Figure 5-24 High resistivity related data shifts 5-34
Figure 5-25 Effect of power input on particle penetration 5-35
Figure 5-26 Example layout of roof mounted rappers 5-37
Figure 5-27 Support insulator failure chart 5-38

Figure 6-1 Slack-tube manometer 6-3
Figure 6-2 Magnehelic® pressure gauge 6-4
Figure 6-3 Magnehelic® calibration apparatus 6-4
Figure 6-4 Cutaway of Fyrite® analyzer unit 6-7
Figure 6-5 Typical grounding cable 6-9

Figure 7-1 Major equipment symbols 7-2
Figure 7-2 Minor component symbols 7-3
Figure 7-3 Material stream symbols 7-3
Figure 7-4 Instrument symbols 7-4
Figure 7-5 Identification of emission points 7-6
Figure 7-6 Flowchart of a waste solvent system 7-7
Figure 7-7 Flowchart of an asphalt plant mixing chamber 7-7
Figure 7-8 Flowchart of a hazardous waste incinerator and pulse jet baghouse system 7-8
Figure 7-9 Flowchart of a hazardous water incinerator and venturi scrubber system 7-12
Figure 7-10 Static pressure profiles 7-14
Figure 7-11 Example flowchart 7-15
LIST OF TABLES

Table 1-1 Examples of Direct Comparison Type Inspection Analyses 1-8
Table 3-1 Temperatures and Acid Resistance Characteristics 3-17
Table 3-2 Fabric Resistance to Abrasion and Flex 3-18
Table 5-1 Typical Sizing Parameters for Dry Negative Corona ESPs 5-14
Table 6-1 Checking O₂ and CO₂ Measurements 6-8
Table 7-1 Minor Components 7-2
Table 7-2 Codes for Utility Streams 7-4
Table 7-3 Instrument Codes 7-4
Table 7-4 Codes for Construction Materials 7-5
Table 7-5 Baseline Data for the Hazardous Waste Incinerator 7-9
Table 7-6 Gas Temperature Profile for the Hazardous Waste Incinerator 7-9
Table 7-7 Gas Static Pressure Profile for the Hazardous Waste Incinerator 7-9
Table 7-8 Static Pressure and Static Pressure Drops 7-13
Table 7-9 Gas Temperatures 7-13