NACT 224
Observing Source Tests

Course Overview

- Planning a Source Test
- Source Test Basics
- Observing the Test
- Problem Areas
- Reviewing Test Data

Method 5 Sampling Train

Impinger train optional, may be replaced by an equivalent condenser.

Temperature sensor
Reverse-type pilot tube
Stack wall

Fiber holder

Thermometers

Heated area

Check valve

Vacuum line

Thermometers

Main valve

By-pass valve

Method 5 Sampling Train

Impingers

Vacuum gauge

Dry gas meter

Air tight pump

Impinger train optional, may be replaced by an equivalent condenser.
Purpose of Source Testing

For the Agency:
- Provide Data to Evaluate Compliance
- Provide Data to Formulate Control Strategies
- Provide Data for Regulation Development

For the Facility:
- Provide Data to Evaluate Compliance Status
- Meet Permit-To-Operate (PTO) Conditions
- Provide Info. on Control Device Efficiency
- Provide Info. for Design of New Processes
- Provide Info. on Process Operation
- Certify CEMs
- Certify PEMS

Federal & State Regulations
Authorities Requiring Source Testing

- Federal
 - NSPS
 - NESHAP
 - Title V Permits
- State and Local Requirements
 - Enforcement
 - Permitting
 - Emissions Inventory

Role of the Observer

- Evaluate Representativeness of a Test
 - Process & Control Equipment Operation
 - Sampling Port Location
 - Sample Collected
 - Sample Recovery & Analysis
 - Report

- Represent the Interests of Agency
 - Tests Satisfy the Needs of the Agency
 - Planning & Pretest
 - During the Test
 - Post Test
- QA/QC Officer
Role of the Observer

- Is the Source Test Legally Defensible?
 - Evaluate the Test Activities
 - Evaluate the Test Company/Team Qualifications & Competence
 - Evaluate the Laboratory Qualifications & Competence
 - Reliable & Appropriate Test Methods
 - Chain-of-Custody

Role of the Observer

- Observer Behavior
 - Test is Successful
 - Cooperate with Both Facility & Testers
 - Specific & Firm Requests
 - DO NOT Intrude or Interfere Unnecessarily

Test Protocol
Test Protocol

- Name & Location of Tested Facility
- When is Test (Adequate Notification?)
- Purpose of Test
- Testing Contractor (AETB?)
- Facility Description
- Process Description
- What is to be Tested

Test Protocol

- Regulatory Requirements
- Test Methods to be Used
- Schedule of the Test
- Test Location Configuration & Type
- Number & Size of Test Ports
- Process Rate to be Tested
- Report Requirements
- Unusual Requirements
Testing Access

- **Access to the Stack**
 - Getting Equipment to the Stack, Vehicle Access
 - How far up is the Testing Platform?
 - Getting Personnel & Equipment up the Stack
 - Is the Platform Secure?

- **Logistics**
 - Are there Electrical Outlets at the Stack?
 - What Load will the Electrical Circuits Hold?
 - Explosion Proof Electrical Equipment Required?
NACT 224
Observing Source Tests

Hazards
- What are the Stack Emissions?
- What Heat & Gas Hazards Exist?
- What are the Facility Health & Safety Procedures?
- Are Entry, Confined Space, or Other Permits Required?

Hazards:
- Heat, Gas Weather

Hazards
- What Protective Equipment is Needed?
 - Normally?
 - In the Event of an Accident or Plant Upset?
 - What are the Plant Safety Warnings?
- Weather Hazards
 - High Winds
 - Heat Lightning
 - Cold, ice, & Snow
NACT 224
Observing Source Tests

Problem Sources

- Eccentric & Tapered Stacks
- Horizontal Ducts
- Unconfined Flow
- High Temperatures
- Saturated Stack Gas

Saturated Exhaust

High Temp. Exhaust
Problem Sources

- Low Flow Rate
- Cyclonic Flow
- Condensables
- Reactive Compounds
- Soot Blowing

High Pressure Steam

Stack Access
Observing the Source Test

- Physical Inspection Points
- Procedural Inspection Points
- Calculation Inspection Points
- Preliminary Data Collection
- QC Audits

Documentation

- What Process & Control Room Data Area Available?
- What Data Are Required for the Test?
- What Data Are Required to Document Process Conditions?
- What Data Are Required to Document Continued Compliance?
- Is Any Control Room Data Confidential?

Checklists

- Ensure All Inspection Points Are Covered
- Ensure All Data Points Are Properly Collected
- Should Be Reviewed & Modified for the Source Being Tested
Let’s Discuss Basic Test Methods

- **Method 1 - Sampling Point Location**
- **Method 2 - Stack Gas Velocity**
- **Method 3 - Dry Molecular Weight**
- **Method 4 - Moisture Content of Stack Gases**
- **Method 5 - Particulate Emissions**
- **Method 6 - Sulfur Dioxide Emissions**
- **Method 7 - Nitrogen Oxide Emissions**
- **Method 10 - Carbon Monoxide Emissions**
Method 1

Sample & Velocity Traverses for Stationary Sources

- Specifies Both the Sampling Site Location & the Location of the Sampling Points
- The More Convoluted the Ductwork, the More Points that Will Need to be Tested

Stack Velocity Stratification

Stack Velocity Stratification

Cyclonic Flow
NACT 224
Observing Source Tests

Sampling Site Criteria

Ideal: Port is 8 duct diameters downstream of A and 2 duct diameters upstream of B

Sampling Criteria

Sampling Criteria
Rectangular Duct Cross-Section Layout

<table>
<thead>
<tr>
<th># of Traverse Points</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>3 x 3</td>
</tr>
<tr>
<td>12 (example on next slide)</td>
<td>4 x 3</td>
</tr>
<tr>
<td>16</td>
<td>4 x 4</td>
</tr>
<tr>
<td>20</td>
<td>5 x 4</td>
</tr>
<tr>
<td>25</td>
<td>5 x 5</td>
</tr>
<tr>
<td>30</td>
<td>6 x 5</td>
</tr>
<tr>
<td>36</td>
<td>6 x 6</td>
</tr>
<tr>
<td>42</td>
<td>7 x 6</td>
</tr>
<tr>
<td>49</td>
<td>7 x 7</td>
</tr>
</tbody>
</table>

Rectangular Duct Traverse (12 points)

![Rectangular Duct Traverse (12 points)](image)

Circular Stack Traverse (12 Points)

![Circular Stack Traverse (12 Points)](image)
NACT 224
Observing Source Tests

Location of Traverse Points in Circular Stacks

Particle Stratification & Plane of Bend

Cyclonic Flows
NACT 224
Observing Source Tests

Calculation Inspections

- **Confirm Input Data**
 - **Stack**
 - Dimensions
 - Calculate Equivalent Diameter (If Stack is Not Circular)
 - Location of Disturbances
 - **Traverse Points**
 - Evaluate Number of Points
 - Evaluate Location of Points

 Equivalent Diameter

 \[D_e = \frac{2 \times LW}{L + W} \]

Method 2

Determination of Stack Gas Velocity and Volumetric Flow Rate

- **Method Uses Type S Pitot Tube**
- **Method Also Used to Certify Flow Monitors**

 Stack Volumetric Flow Rate: \[Q_s = A_s \times V_s \]
NACT 224
Observing Source Tests

Volume of a Gas vs. Absolute Temperature

Absolute Temperature
Degrees Rankine: \(R = °F + 459.49 \)
Degrees Kelvin: \(K = °C + 273.16 \)

Atmospheric or Barometric Pressure

Gauge Pressure

Absolute Pressure
\(P_a = P_b + P_g \)

Differential Pressure Measuring
Differential Pressure Measuring

V_s P_s P_v P_v

Stagnation pressure Static pressure Velocity pressure

Type “S” Pitot Tube & Orifice Meter

Standard Pitot Tube

Type S Pitot Tube
NACT 224
Observing Source Tests

Type S Pitot Tube Construction

Physical & Procedural Inspections
- Pitot tube
 - Construction & Condition
 - Alignment (Bent, etc.)
 - Orientation & Attachment to Probe
 - Calibration
 - Leak Checked (Both Sides)
- Pressure Instruments
 - Oil Manometer Leveled & Zeroed
 - Magnehelic Gauge Calibrated
- Cyclonic Flow Checked

Pitot Tube Roll and Pitch
- Roll angle
- Pitch angle
- Rotational
- Vertical
Calculation Inspections

- **Confirm Input Data**
 - Stack Pressures
 - Stack Temperature
 - Calibration Factors

Δp - Velocity pressure

The difference between the two pressure taps of a pitot tube (determined by averaging the square roots of all the Δp readings. Note -- DO NOT take average of readings and then take the square root).

Stack Gas Velocity

- \(C_p = 0.84 \)
- \(t_s = 345^\circ C \)
- \(T_s = 345^\circ C + 273^\circ C \)
- \(\Delta p = 38.1 \text{ mm H}_2\text{O} \)
- \(P_s = 35 \text{ mm H}_2\text{O} \)
- \(K_p = 34.97 \text{ (metric)} \)

\[v_s = K_p C_p \sqrt[1/2]{\frac{T_s \Delta p}{P_s M_s}} \]

\[32.5 \text{ m/s} = 34.97 \times 0.84 \sqrt[1/2]{\frac{(345+273) \times 38.1}{(680+35/13.6) \times 28.2}} \]

Calculation Inspections

- **Stack Volume**
 - Stack Area
 - Flow

Stack Gas Volumetric Flow Rate

\[Q_s = A_s V_s \]

\[Q_s = A_s K_p C_p \left(\frac{T_s \Delta p}{P_s M_s} \right)^{1/2} \]

\[Q_{sd} \text{ (ft}^3/\text{hr}) = 3600 \times (1 - B_{ws}) A_s V_s \frac{T_{STD} P_s}{T_s P_{STD}} \]
Method 3
Gas Analysis for Determination of Dry Molecular Weight
- Determines %CO₂, %O₂, & CO
- Balance is N₂
- Needed for Both Pitot Tube Equation & Isokinetic Rate Equation
Fyrite Gas Analyzer for CO₂ or O₂

Electrocatalytic O₂ Analyzer

NDIR CO₂ Analyzer
Molecular Weight by Mole Fraction

- $\text{O}_2 = 55 \text{ mm Hg (8.1\%)}$
- $\text{CO}_2 = 65 \text{ mm Hg (9.6\%)}$
- $\text{CO} = 8 \text{ mm Hg (1.1\%)}$
- $\text{N}_2 = 552 \text{ mm Hg (81.2\%)}$
- $P_b = 680 \text{ mm Hg}$

\[
M = \sum B_i M_i = \frac{55}{680} \times 32 + \frac{8}{680} \times 28 + \frac{65}{680} \times 44 + \frac{552}{680} \times 28
\]

\[
= 30.0 \text{ g/mole}
\]
ORSAT Analysis Check by F_o

\[O_2 = 8.1\% \quad CO_2 = 9.6\% \]

\[F_o = \frac{20.9 - \%O_2}{\%CO_2} \]

\[F_o = \frac{20.9 - 8.1}{9.6} = 1.33 \]

Table value for oil combustion = 1.260 - 1.413

ORSAT analysis is OK

Method 4

Determination of Moisture Content in Stack Gas

- Needed for Both Pitot Tube Equation & Isokinetic Rate Equation
- 4 Methods Can be Used
 - Saturation Pressure: T_{GAS}
 - Psychrometry: Wet & Dry Bulb Temp.
 - Adsorption: Silica Gel Tubes
 - Condensation: Impingers (Vol of H_2O + Vol of Gas)
NACT 224
Observing Source Tests

Calculation & Procedural Inspections

- Recovery
 - No Spillage
 - Measured Correctly

- Moisture
 - Preliminary
 - Final
 - Dry vs Wet Molecular Weight

\[M_{\text{saturated}} = M_{\text{dry}} (1 - B_{\text{ws}}) + 18B_{\text{ws}} \]

Wet Basis Molecular Weight

- \(M_d = 30.0 \) (dry)
- \(B_{\text{ws}} = 15\% \)

\[M_s = M_d (1 - B_{\text{ws}}) + 18B_{\text{ws}} \]
\[M_s = 30.0 (1 - 0.15) + 18 \times 0.15 \]
\[= 28.2 \text{ g/mole} \]

\[B_{\text{ws}} = \frac{\text{Vol of H}_2\text{O}}{\text{Vol of Gas}} \]

Method 5
Isokinetic Sampling -- The sample is drawn into the probe nozzle at the same rate as it is moving in the flue gas.

Isokinetic Source Sampling System
Method 5 Sampling Train

Nozzle Design and Placement

Sample Nozzles
NACT 224
Observing Source Tests

Sample Nozzles

Physical Inspections

- **Nozzle**
 - Construction (SS or Glass)
 - Alignment & Installation on the Probe
 - Dents, etc.
 - Calibration
 - Rinsed During Sample Recovery

Nozzle Inspection
Calculation Inspections

- **Nozzle Diameter**

\[
D_n = \sqrt{\frac{K_D Q_m P_m}{T_m C_p (1 - B_{ws})}} \frac{T_m M_s}{P_s \Delta P_{est}}
\]

\[K_D = 6.07 \text{ (0.0358 English units)}\]

Nozzle Diameter

- \[K_D = 6.07\]
- \[Q_m = 0.021 \text{ m}^3\]
- \[P_m = 683.6 \text{ mm Hg}\]
- \[T_m = 28^o \text{C}\]
- \[C_p = 0.84\]

\[
B_{ws} = 0.15
\]

\[
T_s = 345^o \text{C}
\]

\[
M_s = 28.2 \text{ g/mole}
\]

\[
p_s = 35 \text{ mm H}_2\text{O}
\]

\[
\Delta p_{wat} = 38 \text{ mm H}_2\text{O}
\]

\[
D_n = \sqrt{\frac{6.07 \times 0.021 \times 683.6}{(28+273) \times 0.84 \times (1-0.15)}} \frac{(345+273) \times 28.2}{(680+35/13.6) \times 38}
\]

\[D_n = 0.576 \text{ cm}\]

Probe Assembly
Physical Inspections

- **Temperature Probe**
 - Condition
 - Calibrated

- **Probe**
 - Long Enough to Reach, Not Too Long
 - Heated
 - SS or Glass Liner
 - Marked (Heat Resistant) for Traverse Points
 - Rinsed During Sample Recovery

Modular Sample Unit

Method 5
Glassware
Physical Inspections

- **Sampling Case - Hot Side**
 - Heated (Check Method for Proper Temperature)
 - Temperature Gauge Installed
 - Glassware Properly Assembled

- **Cold Side**
 - Glass Impingers
Observing Source Tests

- Impinger Ice Bath

Physical Inspections

- Sampling Case - Cold Side
 - Glassware Properly Set-Up
 - Proper Solutions in Impingers
 - Ice & Water Bath - Exit Temperature
NACT 224
Observing Source Tests

Umbilical Cord

Isokinetic Control Console
Physical Inspections

- **Pump**
 - Non-reactive and leak free
- **Dry gas meter**
 - Leak free
 - Calibrated
- **Orifice meter**
 - Calibrated

Sampling Rate

- **Constant Rate**
- **Proportional**
- **Isokinetic**
Let's Discuss
Isokinetic Sampling

Isokinetic Sampling

Stack → Nozzle

$\mathbf{v}_s = \mathbf{v}_n$

$m_s = 0.44 \text{ grams/min}$

$Q_s = 0.025 \text{ m}^3/\text{min}$

$c_s = 0.44/0.025 = 17.6 \text{ g/m}^3$

$c_s = 17.6 \text{ g/m}^3$

Over Isokinetic Sampling

Stack → Nozzle

150% Isokinetic

$\mathbf{v}_s = 1.5 \mathbf{v}_n$

$m_s = 0.46 \text{ grams/min}$

$Q_s = 0.0375 \text{ m}^3/\text{min}$

$c_s = 0.46/0.0375 = 12.8 \text{ g/m}^3$

$c_s = ? (c_s > c_s)$
Under Isokinetic Sampling

75% isokinetic

$$v_s = 0.75 \cdot v_i$$

$$m_i = 0.42 \text{ grams/min}$$

$$Q_s = 0.01875 \text{ m}^3/\text{min}$$

$$c_s = \frac{0.42}{0.01875} = 22.4 \text{ g/m}^3$$

$$c_s = ? (c_s < c_i)$$

Nozzle Misalignment

Calculation Inspections

Orifice Meter (Sample Flow Rate)

Settings

$$\Delta H = K_H D_n^4 \Delta H @ C_p^2 (1-B_{ws})^2 \frac{M_s T_s P_s}{M_s T_s P_m} \Delta P$$

K factor - used for rapid calculation of ΔH

$$K_H = 0.803 \text{ (846.72 English units)}$$
K Factor and ΔH

- $K = 0.803$
- $D_n = 0.576$ cm
- $\Delta H = 49.3$ mm H$_2$O
- $C_p = 0.84$
- $B_w = 15\%$
- $\Delta p = 38.1$ mm H$_2$O

$$\Delta H = 0.803 \times 0.576 \times 49.3 \times 0.84 \times (1 - 0.15) \times 38.1$$

K factor = 1.15

$\Delta p = 38.1$

$\Delta H = K \times \Delta p = 43.81$

Procedural Inspections

- **Sampling Points**
 - Properly Laid Out
 - Move Between Points on Time
 - Move Between Points Quickly
 - Data Read & Recorded Quickly & Accurately
 - Delta H Calculated & Adjusted Quickly

- **Dry Gas Meter**
 - Start/Stop Times & Volume Readings Accurately Recorded
 - Sampling Times & Volume Requirements Met

Console Adjustment

Observing Source Tests

Calculation Inspections

- **Percent Isokinetic**

\[
\%I = 100 \times \frac{T_s[V_{ic}K + V_m/T_m(P_b + \Delta H/13.6)]}{60 \times A_n V_s P_s}
\]

\[K = 0.003454 \text{ mm Hg m}^3/\text{ml K}\]
\[0.002669 \text{ in Hg ft}^3/\text{ml } \text{°R}\]

Percent Isokinetic

- \(T_s = 345\)°C
- \(\Theta = 48\) min
- \(V_{ic} = 113\) ml
- \(V_m = 1.008\) m³
- \(T_m = 28\)°C

\[
\%I = 100 \times \frac{(345+273)(113x0.003454+1.008)(680+43/13.6)}{60\times48\times2.6\times10^{-5}\times32.5\times(680+35/13.6)}
\]

\[\%I = 99.7\%

Procedural Inspections
Procedural Inspections

- Sample Recovery
- Sampling Completion Procedure
- Leak-Check
- Cool-Down
- Probe & Glassware Cleanup
- Impinger Recovery
- Filter Recovery

Sampling Train Leak Test

Probe Brushing
NACT 224
Observing Source Tests

Probe Rinse

Filter Recovery

Physical Inspections

- Sample Properly Recovered
 - Good Particulate Deposit - No Evidence of Leaks
 - Impinger Solution Weighed &/or Recovered After Sampling
 - Rinse Front Half of Filter Holder
 - Back Half Also
 - Probe Properly Cleaned
 - Filter Properly Weighed
Observing Source Tests

PM$_{10}$ - Sampling Train

Cascade or Inertial Impactor

EPA Particulate Reference Methods 5.1 for 201A: Sampling Components

04/18
Source Test Analytical Techniques

- Infrared Methods
 - Differential Absorption
 - Gas Filter Correlation
 - Fourier Transform Infrared
- Ultraviolet Methods
 - Differential Absorption
 - Second Derivative Spectroscopy
- Visible Light
 - Scattering & Absorption

Source Test Analytical Techniques

- Luminescence Methods
 - Fluorescence
 - Chemiluminescence
 - Flame Photometry
- Electroanalytical Methods
 - Polarography
 - Electrocatalytic
 - Paramagnetism
 - Conductivity

Method 6C

Determination of SOx Emissions from Stationary Sources
Observing Source Tests

Fluorescence SO₂ Analyzer

Chemiluminescence NOₓ Analyzer

Determination of NOₓ Emissions from Stationary Sources

Method 7E

04/18
NACT 224
Observing Source Tests

Method 10

Determination of CO Emissions from Stationary Sources

Gas Filter Correlation Analyzer
Instrument Inspections

- Always Check Applicable Method & Subpart
- Instrument Span
- Calibration Error
 - \(\pm 2\% \) of Span for Zero, Mid, & High Range Gases
- Sampling System Bias
 - \(\pm 5\% \) of Span for Zero & Mid or High Range Gases
- Zero Drift & Calibration Drift
 - \(\pm 3\% \) of Span Over the Period of Each Run
- Interference Check
Cal Gas Certificate Points

- Cylinder ID Number
- Balance Gas
- Cylinder Pressure
- Certification Date
- Expiration Date
- Lab & Analyst ID
- (PGVP – Part 75)

Reference Standard Data

- Statement of Procedures
- Certified Concentration
- Gas Analyzer ID & Cal Date
- Analyzer Readings & Calc Used
- Chronological Cert Record

Calibration Gas Hierarchy

Standard Reference Materials (SRMs) from NIST

- NIST Traceable Reference Materials (NTRMs)
- Gas Manufacturers Intermediate Standards (GMISs)

- Directly Traceable EPA Protocol Gases
- Indirectly Traceable EPA Protocol Gases
NACT 224
Observing Source Tests

Procedural Inspections

Data Recording
- Timely, Accurate, & Complete
- Standardized Form Used
- Computer Data Entry:
 - Automatic - Computer Controlled Equipment
 - On Site After Sampling or During Sample (Computer Data Entry Form)
 - After Sampling Completed

Procedural Inspections

Sample Conservation
- Container Material Must be Compatible with Sample
- Storage Conditions
 - Refrigerate the Samples if Held Overnight
- Blanks Properly Prepared & Shipped with Field Samples
- Sample Container Must be Labeled
- Shipping
- Chain-of-Custody
Procedural Inspections

Analysis

- **On Site**
 - Weights & Volumes
 - Some Simple Titration’s & Chemical Analysis can be Done on Site
 - Work Area Conditions must be Consistent with Good Laboratory Procedures
- **Off Site**
 - Analytical Lab Should be Certified
 - QA Samples

Lab Analysis

Emissions Calculations
Observing Source Tests

Emission Calculations

- **Emission rates**
 - Concentration (c_s) : (ppm, g/dscm, gr/dscf)
 - Pollutant mass rate (pmr_s) : (kg/hr, lb/hr)
 - Process rate (E) : (ng/J, lb/10^6 BTU, lb/ton)
 - Flow rates or F factors

\[
E = \frac{pmr_s}{Q_H} = \frac{csQ_H}{Q_H} = csF\left(\frac{20.9}{20.9 - \%O_2}\right)
\]

Calculation Inspections

- **Normalized to Diluent Gas**
 - O_2
 - CO_2

\[
c_s^{12\%CO_2} = \frac{12}{\%CO_2} ~ c_s^{6\%O_2} = \frac{15}{21 - \%O_2}
\]

Effects of Errors

- **Impact of Errors on Validity of Test**
 - What is the Data to be Used for?
 - What is the Direction & Magnitude of any Biases?
 - What is the Acceptable Bias Before Rejecting the Testing?
Effects of Errors

Accuracy
- Compares Well with the Correct Value

Precision
- Repeated Tests Give the Same Results

Accuracy & Precision

- Accurate and Precise
- Accurate but not Precise
- Precise but not Accurate
- Neither Accurate nor Precise

Post Test Activities

- Post Test Conference
- Observer’s Test Report
- Report Requirements & Submittal
- Test Report Review
 - Summary Data
 - Detailed Test Data
 - Raw Data
Post Test Activities

- Evaluation of Compliance in Light of the Test Result
 - Current Enforcement Action
 - Future Inspections
 - Enforcement

Inspector Safety

- Proper equipment
- Plant warnings
- Heat
- High pressure steam
- Electrical hazards
- Noise
- Moving parts
- Inhalation hazards
- Hazardous materials
- Machine disintegration
- Other hazards & traps

In Summary: Source Test Successful

If an Evaluator Can Evaluate Representativeness of:

- Process & Control Equipment Operation
- Sampling Port Location
- Sample Collected
- Sample Recovery & Analysis
- Final Report