Let's Talk Rock

Course Overview: Aggregate Plants

- Introduction
- Emissions and Health Impacts
- Aggregate Industry
- Aggregate Process
- Engineering Evaluation
- Inspection Procedures

Aggregate Plants
Emissions and Health Impacts

Who?

How?

Emissions from Nonmetallic Mining

- Particulate Matter
 - PM, PM10 & PM2.5

- Gases
 - Toxic, Reactive,
 - CO, NOx & SOx

- Asbestos & Heavy Metals

Emissions from Nonmetallic Mining in California (tons/day)

<table>
<thead>
<tr>
<th>Emissions</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxic Organic Gases (TOG)</td>
<td>0.22</td>
</tr>
<tr>
<td>Reactive Organic Gases (ROG)</td>
<td>0.15</td>
</tr>
<tr>
<td>Carbon Monoxide (CO₂)</td>
<td>0.05</td>
</tr>
<tr>
<td>Oxides of Nitrogen (NOx)</td>
<td>0.10</td>
</tr>
<tr>
<td>Oxides of Sulfur (SOx)</td>
<td>0.01</td>
</tr>
<tr>
<td>Total Particulate Matter (PM)</td>
<td>25.19</td>
</tr>
<tr>
<td>Particulate Matter PM10</td>
<td>11.73</td>
</tr>
<tr>
<td>Particulate Matter PM2.5</td>
<td>4.46</td>
</tr>
</tbody>
</table>
How Small is PM?

Human Hair (60 μm diameter)

PM$_{2.5}$ (2.5 μm)

PM$_{10}$ (10 μm)

Hair cross section (60 μm)

How Small is PM?

<table>
<thead>
<tr>
<th>Hair</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Microns and larger</td>
<td>7 to 11 Microns</td>
</tr>
<tr>
<td>7 to 11 Microns</td>
<td>4.7 to 7 Microns</td>
</tr>
<tr>
<td>4.7 to 7 Microns</td>
<td>3.3 to 4.7 Microns</td>
</tr>
<tr>
<td>3.3 to 4.7 Microns</td>
<td>2.1 to 3.3 Microns</td>
</tr>
<tr>
<td>2.1 to 3.3 Microns</td>
<td>1.1 to 2.1 Microns</td>
</tr>
<tr>
<td>1.1 to 2.1 Microns</td>
<td>0.43 to 1.1 Microns</td>
</tr>
<tr>
<td>0.43 to 1.1 Microns</td>
<td>0.65 to 1.1 Microns</td>
</tr>
</tbody>
</table>

Health Effects of PM

The Filial have been damaged from particulate exposure
Asbestos Emissions/Health Impacts

- Aggravated asthma
- Respiratory Distress
- Decreased Lung Function
- Chronic Bronchitis

Health Effects of PM/PM2.5

- X-ray of a lung exposed to asbestos
- Result: Mesothelaoma
Concerns???

Proximity to homes/parks?
Let’s Discuss Aggregate Processing
Definition of Natural Aggregate:
A material composed of rock fragment (sand, gravel, and crushed stone) that may be used in its natural state or crushed, washed and sized.
Sand and Aggregate are:
- Loose mineral and rock particles
- Transported by water and erosion

Key Differences:
- Aggregate...passes through 2 inch screen
- Sand...passes through 1/4 inch opening (retained on a 200 mesh per square inch screen)

Aggregate Industry

Aggregate Industry Type

Natural

Crushed by Mechanical Means

Over the top??
Emission Sources

• Plant Generated Dust
 – Drilling
 – Crushing
 – Conveying
 – Screening
 – Stockpiling
• Fugitive Dust
 – Geologic material generated by:
 • Wind
 • Human activity

Process & Controls

Emissions are measured by knowing

• How much aggregate is processed over time?
• How much moisture is in the material being processed?
• The control efficiency of the air pollution control device…

Resulting in:

• Total Emissions (mass based...pounds/day or tons/year)
General equation from EPA AP-42 is:

\[E = A \times EF \times (1-ER/100) \]

where:
- \(E \) = emissions
- \(A \) = activity rate
- \(EF \) = emission factor
- \(ER \) = % overall emission reduction efficiency

Calculating Emissions

 Aggregate Mining

- Two General Types:
 - Sand and Gravel & Crushed Stone

Aggregate Mining

Sand & Gravel Mining
Aggregate Mining

Crushed Stone Mining

- Drilling
- Blasting

Heavy Metals

- Associated with quartz or volcanic deposits
- Metals include nickel, cadmium and antimony
- Become airborne during blasting or crushing
- Questionable sources should be sampled for presence of heavy metals
246: HMA, Aggregate & Concrete Batching

Aggregate Mining

Wash Plant with trommel screen
5/30/2017

Aggregate Mining

Recycled Water from Wash Plant

Wash Plant, Screens & Truck Loadout
Aggregate Mining

Process/Control, Crushing, Screening & Transfer Points

Materials Handling

- Feeders/Conveyors
 - Primary
 - Secondary
- Crushers
 - Primary
 - Secondary
 - Tertiary
Feeders

Feeders are used to:

• Absorb the impact from dumping large quarried stone
• Feed the plant with a controlled, steady stream of raw material Used to handle muddy or sticky materials
• They are located ahead of large, stationary primary crushers

Application of Feeders

<table>
<thead>
<tr>
<th>DUTY</th>
<th>RECOMMENDED TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck dumping or direct feeding by Dozer, Shovel or Grader MaintenanceMarshalls</td>
<td>Super Heavy Duty Apron Feeder with interlocking flights</td>
</tr>
<tr>
<td>Under hopper or bin, handling non-adhesive material. Maintenance required to exceed 75 percent of feeder width</td>
<td>Super Heavy Duty Apron Feeder</td>
</tr>
<tr>
<td>Truck dumping or direct feeding by Dozer, Shovel or Grader MaintenanceMarshalls</td>
<td>Heavy Duty Apron Feeder</td>
</tr>
<tr>
<td>Under hopper or bin, handling non-adhesive material. Maximum tipping load not to exceed 75 percent of feeder width.</td>
<td>Heavy Duty Apron Feeder</td>
</tr>
<tr>
<td>Under Primary Crusher to protect belt conveyors</td>
<td>Vibrating Feeder or Grizzly Feeder</td>
</tr>
<tr>
<td>Under bars, hoppers or surge piles. Maximum tipping load not to exceed 20 percent of feeder width.</td>
<td>Belt Feeder</td>
</tr>
<tr>
<td>Under Large Primary Crushers</td>
<td>Heavy Duty Apron Feeder</td>
</tr>
</tbody>
</table>

Feeders & Conveyors

- Primary
 - Apron
 - Grizzly/Belt

Vibrating Feeders 36" to 72" wide, 12" to 36" high
Apron Feeders

Apron feeders are used where:

- Extremely rugged machines handling large feed are required
- Used to handle muddy or sticky material
- They are located ahead of large, stationary primary crushers

Vibrating Feeder & Vibrating Grizzly Feeders

These feeders are used where:

- Used where a compact feeder with variable speed control is required
- Vibrating Grizzly feeder is similar plus grizzly bars for separating fines the crushed feed
- They help bypass fines around the primary crushers increasing production & reduces crusher liner wear.

Vibrating Grizzly Feeders

- Grizzly
 - Vibrating Grizzly
 - Step deck Grizzly
Vibrating Grizzly Feeders

Reduces crusher liner wear
Vibrating Grizzly Feeders

Jaw crusher

Belt Feeders

Belt feeders are used:

- Under a hopper or trap with 6” maximum feed size
- They have an infinite variable speed control for optimum plant feed rate

Belt Feeders & Conveyors

Feeder with Spray bar
Vibrating Pan

Primary Conveyor

Wobble Feeder
- Combined feeder and scalper
- Effective in handling clay or fine sticky feed material
Crushing

- Fracture Mechanisms
- Crushing Equipment
- Factors Influencing Crushed Product

Fracture Mechanisms

Particle Breaking:
1. Abrasion
2. Cleavage
3. Shatter

Primary or Jaw Crusher
Jaw Crusher

3” – 8” size rock

Jaw Crusher

No Spray bars

Spray bars to reduce emissions
246: HMA, Aggregate & Concrete Batching

Cone Crusher

Cone Crusher

Cone Crusher

Cone Crusher
Grinding Mill or Ball Mill

- Dry ball mills most popular, due to economics
- Used for finer material separation

Media are rods or balls

- Rods are for coarse-like manufactured sand or cement klinker

Screening Operations
Screening Operations

FROM THE MINE

SCALPING SCREEN
PRIMARY CRUSHER
SURGE PILE
RECLAIM TUNNEL
SECONDARY CRUSHER
SECONDARY SCREENS
PRODUCT SORTED BY SIZE
RECLAIM TUNNEL

Screens from 8' x 8' to 8' x 24'
Fugitive Dust from Screening Operations

Screens

Screen Test @ Lab
• Point emissions originate from stacks
 – Control Devices
 – Where aggregate is dried
• Stack emissions
 – Moisture
 – Gases
 – PM/PM10/PM2.5
 – All of the above
Stockpiling

Could be a potential source of fugitive dust emissions

Screening, Storage & Loadout Operations

Storage & Loadout Operations

43
Air Pollution Control Measures

- Preventative Measures
 - Passive Enclosures
 - Wet/Chemical Suppression
 - Paved Surface/Cleaning

- Dry Collection Systems
 - baghouse
 - cyclone

Process & Control Measures

Control
Moving conveyors or trucks (Passive control is wind screens)

Operations
Crushing (active control is water)
Transfer (active control is water)

Air Pollution & Control Measures

- Water sprays
- Maintaining good housekeeping
- Covers

- Enclosure or cover at transfer points and screening operations
- Exhausting air to air pollution control systems
Preventative Measures

- Passive enclosures
- Wet suppression
- Stabilization of unpaved surfaces
- Minimizing drop height
- Paved surfaces cleaning
- Work practices
- Housekeeping

5/30/2017

Preventative Measures

- Passive enclosures
- Wet suppression
- Stabilization of unpaved surfaces
- Minimizing drop height
- Paved surfaces cleaning
- Work practices
- Housekeeping

5/30/2017

Preventative Measures

- Passive enclosures
- Wet suppression
- Stabilization of unpaved surfaces
- Minimizing drop height
- Paved surfaces cleaning
- Work practices
- Housekeeping

5/30/2017
Baghouses are regulated in terms of:

- Grains/cubic foot or air emitted (gr./dscf)
- Pounds/Ton of Aggregate produced
- Opacity
Combination Systems

- Dry collection and wet suppression
 - When fine particulates have an economic value in addition to meeting air pollution control laws
 - Due to screen blinding
 - Due to plant location or local pollution control codes, which is not economically feasible

Other Processing Equipment

- Rock Breaker
- Magnets
- Metal Detectors
- Pugmills
- PERP Equipment
- Washing equipment
- Rotary Scrubber
- Wet Classifiers
- Pumps
- Grinding Mills

Inspection Objectives

Determine compliance with:
- District regulations & permit conditions
- Fugitive dust
- Visible emissions
- Oxides of nitrogen (for fuel burning equipment)
- Control devices

Pre-Inspection

- Regulation Review
- Equipment Check
 - Safety goggle and earplugs
 - Safety shoes, hard hat, and gloves
 - ID and business cards
Pre - Inspection File Review

1. Permit application
2. Approved permit
3. Equipment
4. Permit condition for each unit
5. Previous inspection reports
6. NTC/NOV
7. Compliance action
8. Complaints
9. Variance history
10. Abatement orders
11. Date of last source test

Pre - Entry & Entry

- Observe the site
 - Note odors or visible emissions
 - Size and layout
 - Environmental demeanor
- ID potential problem areas
- Enter through normal public access
- Introduce yourself, ask to see contact listed in file, & present business card

5/30/2017

Pre - Inspection Meeting

- State purpose of inspection and identify equipment to be inspected
- Obtain:
 - company name, ownership, address, contact name
 - operating schedule, date of last source test, fuel usage
- Discuss any outstanding business
- Date of last breakdown
- Status of:
 - dust suppression equipment
 - Air pollution control equipment
 - Monitoring and recording devices
- Check Permit
Non - Compliance

A NTC/NOV is issued when the permit is not:
1. Current or no permit
2. Posted properly
3. Or conditions on permit are not followed
4. Blatant disregard

Post - Inspection

- Make compliance determination
- Inform site of inspection (NOVs, and advise on areas of concern
- Document pending NOVs due to additional info request etc.

Safety