VOC Control Devices / Scrubbers

Course Overview

- Volatile Organic Compound (VOC) Controls
- Examples of VOC Calculations
- Particulate Matter (PM) Options
- Inspection Strategies

Volatile Organic Compounds

Chemical definition of VOCs:
- Molecules which contain carbon &
- High evaporative rate at low temperatures
- \[VP > 0.1 \text{mm Hg} \]
Legal Definition of VOCs

- Federal and State laws & regulations
 - 40 CFR § 51.100
 - Latest Definitions of VOCs and ROGs as of...
- Total Organic Gases (TOGs)
- Reactive Organic Gases (ROGs)
- Fraction of Organic Gases (FROGS)
- Local Agency rules and permit conditions

Why are VOCs Regulated?

Why is Ozone Regulated?
Ozone Formation

- VOCs + NO\(_x\) + sunlight > O\(_3\)
- Ozone is formed when NO\(_x\) and Volatile Organic Compounds react in sunlight

VOC Control Process

- Capture
- Control
- Recovery, Disposal or Destruction
VOC Calculations: Capture & Control & Retention

- General Categories of VOC Emissions
 - Fugitive (Not reasonably captured)
 - Captured > Ducted to control device
 - Consumed > Oxidized
 - Retained > Retention factors vary

VOC Capture Efficiency

\[
\text{VOC Capture Efficiency} = \frac{\text{VOCs captured}}{\text{VOCs used}} \times 100
\]

VOCs captured (entering control device) 80 lbs
VOCs used (and therefore emitted) 100 lbs
VOC capture efficiency (by calculation) 80%

* Capture Efficiency is the percentage of emissions captured and vented to a control device. — EPA
VOC Control Efficiency

\[
\% \text{ CE} = \left[1 - \frac{\text{outlet emission rate}}{\text{inlet emission rate}} \right] \times 100
\]

\[
\% \text{ CE} = \left[1 - \frac{2 \text{ lbs/hr}}{100 \text{ lbs/hr}} \right] \times 100 = 98
\]

Examples of VOC Calculations

Graphic Arts Operations

With VOC Retained in Substrate

Graphic Arts Operation
VOC Calculations

- A facility uses 100 lbs/hr of ink that has a VOC content of 35% by weight.
- 20% of the VOC is retained in the substrate.
- The incinerator has a 95% control efficiency.

How many lbs/hr of VOC is emitted?

VOC Emissions = (100 lbs/hr) (0.35) (1-0.20) (1-0.95) = 1.4 lbs/hr

Let’s Discuss Control of VOC

- Containment
- Transfer Efficiency
- Absorption
- Adsorption
- Condensation
- Oxidation

Controlled Spraying aka Pollution Prevention

- Reduces VOC emissions
- Increases transfer efficiency
- Low fluid tip pressure
- Employee gun handling training
High Volume Low Pressure (HVLP) Spray Guns

(HVLP) Spray Gun: Polyester Resin Operations

Fluid Impingement Technology: Polyester Resin Operations
Gel Coat Application in a Spray Booth

Let's Discuss Adsorption Systems

Adsorption Mechanism

Gas

+ Solid
+ surface
Adsorption Mechanism

Step 1.
VOC molecule diffuses to adsorbent surface

Step 2.
VOC migrates into pores

Step 3.
VOC adsorbed and builds up on adsorbent

Adsorption Mechanism

- Chemically unchanged
- Desorbed and recovered
- Polar and non-polar adsorbates
- Mixed adsorbates separated by distillation

Adsorption

- Adsorption materials (adsorbents)
 - Activated carbon
 - Hydrous oxides
 - Silica gel
 - Aluminum oxide
 - Magnesium silicate
 - Zeolites (molecular sieves)
 - Naturals
 - Clays
 - Bauxite
 - Fuller’s Earth
 - Metals
Carbon Adsorbers at a Soil Remediation Site

Factors Affecting Adsorption

- Temperature
- Pressure
- Gas velocity
- Particulate matter

Adsorber Design Considerations

- Porosity of Adsorbent
- Bed Cross-Sectional Area
- Bed Length
- Multiple Organic Compounds
- Steaming Requirements
- Fouling
- Timers/Monitors
- Channeling
Pore Space Representation

- A = Residual VOCs or heel
- B = Working capacity
- C = Equilibrium Capacity
- D = Empty pore space
- E = Total pore space (total capacity)

Carbon Adsorption Keywords

- Fresh zone
 * Area where adsorption will occur
- Mass transfer zone
 * Where adsorption occurs
- Saturated zone
 * Area where adsorption has already occurred

Keywords (continued)

- Heel
 * Amount of VOCs left in the carbon after regeneration
- Breakthrough
 * VOCs that do not get captured
Types of Adsorption Systems

Non-regenerative systems

Regenerative systems
 - on site
 - off site

Characteristics of Activated Carbon

- Sources
 - Wood, coal, peat, nut shells
- Porosity
 - 600-1600 m²/g (2-3 football fields per 1/28 ounce)
- Preparation
 - Anaerobic heat then steam or CO₂
- Degree of adsorption depends on adsorbate
 - MW, BP, polarity, surfactive index, solubility
Examples of Activated Carbon

Finely Granulated Carbon

Types of Carbon Adsorption Systems
- Open
- Closed
- Rotary
- Fluidized bed
- Bulk plant adsorber and absorber
Bulk plant adsorber & absorber

Rotary Concentrator Adsorption System

Rotary ConcentratorAdsorption System
Adsorber Inspections

- Hood static pressures
- Inlet VOC concentrations
- Inlet temperatures
- Inlet VOC concentration not > 25% LEL
- Outlet VOC concentrations
- Fan motor current
- Solvent recovery rates

Let’s Discuss Absorbers

Absorbers

- Pollutants dissolved in liquid
- Absorbate dissolves in absorbent
Factors Favoring Absorption

- Pollutant solubility in liquid
- Adequate diffusion at liquid / gas interface
- Maximized contact between gas and liquid

Absorber Design

- Produce large surface area
- Minimize air flow resistance to reduce pressure drop
- Inlet pressure - outlet pressure = pressure drop

Pressure Drop: Magnehelic
Absorber Design Factors

- Select liquid solvent
- Column material
- Column size
- Column height
- Number of plates
- Pressure drop
Absorbers: Packed Columns

- Flow patterns
- Liquid reuse and treatment
- Packing material
- Packing quality

Absorbers: Plate Columns

- Maximize contact between liquid & gas
- Diameter of column
- Plates
 * Number
 * Type
 * Layout
Packed vs Plate Columns

- Packed columns
 + More common
 - Plugged by particles
 + Better for corrosive pollutants
 + Lighter than plate

Packed versus Plate Columns

- Plate columns are better for:
 + Large temperature changes
 + Lower liquid flow rates
 + Higher gas flow rates
 + Foaming liquids
 + Chemical reactions
 + Large systems

Let's Discuss Condensers
• Condensation = Process of changing a gas to a liquid.
• Condensation allows recovery of solvents and air pollution control

Contact Condensers

• Contact condensers +/-
 + Cheaper
 + More flexible
 + Less repair time
 – Wet waste disposal problem
Surface Condensers

* Shell and tube (most common)
* Fin Fan
* Tubular

Condensers

- Surface condensers +/-
 - Better recovery
 - Commonly used for air pollutants
 - Reduced waste disposal problems
 - More costly

Shell and Tube
Dry Air-Cooled Heat Exchanger:
Steam Condenser

Dry Air-Cooled Condenser Fans

Condenser Concerns

- Freezing
- Fouling
- Cleaning
- Pressure drop
Condenser Inspection

- Look for
 - Excessive corrosion and rusting
 - Leaking coolant or VOC
 - Excessive odors
 - Continuous emissions monitor

Condenser Inspection

- Record
 - VOC outlet concentration
 - Waste stream flow rate
 - Condenser pressure drop
 - Coolant pressure
 - Coolant flow rate

Let's Discuss Oxidizers

Oxidation

• Destruction of VOCs by Combustion

Reactions with oxygen

\[C_7H_8 + 9O_2 = 7CO_2 + 4H_2O \]

Toluene + Oxygen = Carbon Dioxide + Water

Combustion Considerations

- Time
- Temperature
- Turbulence (mixing)
- Oxygen (air)
- Nitrogen (air)
Combustion Devices

- Thermal incinerator (uses a flame)
- Catalytic incinerators (uses a catalyst)
- Boilers (burn VOCs to make steam)
- Process heaters (burn VOCs to add heat in chemical plants and refineries)
- Flares (simple flame)
Can Type RTO

Catalytic Oxidizer/Incinerator
Selection Criteria

- Type of VOCs
- Concentration of VOCs
- Process flow rate
- Economics

Catalytic vs. Thermal for VOC Control

<table>
<thead>
<tr>
<th>Catalytic</th>
<th>Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Operating Temp. & Lower Fuel Usage</td>
<td>Higher Operating Temp. & Higher Fuel Usage</td>
</tr>
<tr>
<td>Higher Capital & Maintenance Costs</td>
<td>Lower Capital & Maintenance Costs</td>
</tr>
<tr>
<td>Catalyst Fouling & Poisoning</td>
<td>No Catalyst Involved Here</td>
</tr>
</tbody>
</table>
Catalyst Problems

- Scouring
- Thermal burnout
- Thermal aging
- Masking
- Catalyst fouling and poisoning

Catalytic Poisons

- **Fast acting poisons**
 - phosphorus P, bismuth Bi, lead Pb,
 - arsenic As, antimony Sb, mercury Hg
- **Slow acting**
 - iron Fe, tin Sn, silica Si
- **Reversible**
 - sulfur S, zinc Zn, chlorine, bromine,
 - fluorine etc. halogens

Catalyst Efficiency

- Operating temperature
- Space velocity
- VOC composition
- VOC concentration
- Catalyst properties
- Poisons and inhibitors
There are two basic types of heat exchangers used for thermal or catalytic oxidizers:

- Metal Heat Exchangers or “recuperative heat exchangers”
- Ceramic Bed Heat Exchangers or “regenerative heat exchangers”
Boilers, Process Heaters & Flares

• Boilers make steam
• Process heaters add heat to material
• Flares are thermal incinerators without a combustion chamber
Let’s Discuss

Flares

Flare Types – Open or Elevated

Flare Types – Enclosed or Ground
Shell Deer Park Refinery in Texas on the Houston Ship Channel.

Flaring gases from an oil platform.

Incinerator Inspection

- Look for
 - Excessive corrosion and rust
 - Holes in incinerator shell or ducts
 - Visible emissions
 - Excessive odors
 - Last time catalyst was replaced
Incinerator Inspection

- Record
 - VOC outlet concentration
 - Incinerator inlet temperature
 - Incinerator outlet temperature
 - Pressure drop
Three Stages

• Pre-Inspection
 * file review, rule review, inspection forms, copy of permit, safety equipment check
• Inspection
 * facility safety indoctrination, pre-inspection meeting
• Post-Inspection Interview

Pre-Inspection Guidelines

• Regulation review
• Equipment check
• Pre-entry and entry
• Pre-inspection meeting
• Permit check

Pre-Inspection Meeting

• Facility name and ownership
• Address including city and zip
• Contact name and title
• Phone number including area code
• Production rate
Pre-Inspection Meeting

- Operating schedule
- Operation season
- Date of last source test
- Fuel usage and sulfur content

Inspection Report

- Description of facility & processes
- Flowchart with equipment location & emission points
- Process diagram (materials handled, flow rates, temperatures, pressures)
- Statement as to compliance or non-compliance
- Enforcement action recommendation

Usage Records

- Review usage records
- Obtain necessary copies
Six points of Inspection
Capture, Transport, Air Mover, Instrumentation, Control, Subsystem

Capture

• Are process emissions drawn into a control device at the point of release?

• Are they drawn into a collection device?
Transport

- Are the emissions moved to the control device without loss?
- Are there any leaks?

Air Mover

- Is the fan big enough for the job?
- Is it operating as designed and permitted?
Instrumentation

- Are the proper instruments present?
- Are they functioning?
- Are they calibrated regularly?
- Are they showing the proper units?

Control Device

- Is it functioning?
- Are there any visible leaks?
- Can the device handle the job?
Subsystem

- What is the ultimate fate of captured or concentrated emissions?
 - Pressure gauges for accuracy & change
 - Fines system for leaks & proper discharge
 - Motor for proper operation

The End